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 
Abstract—This paper presents a novel approach in traffic 

classification that is based on the identification of the service that 
generates the traffic. This method is, in some sense, orthogonal to 
current approaches and it can be used as an efficient complement 
to existing methods to reduce computation and memory 
requirements. Experimental results on real traffic confirm that 
this method is extremely effective and may improve considerably 
the accuracy of traffic classification, while it is suitable to a large 
number of applications. 
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I. INTRODUCTION 

raffic classification is one of the hottest topics in 
computer networks. On the one side, network managers 

want to know precisely the type of traffic transmitted over 
their networks to enforce various polices such as for quality of 
service (QoS), security, management, and more. On the other 
side, an increasing number of applications tend to hide their 
behavior (through encryption, tunneling, etc.) trying to avoid 
limitations imposed by such policies. 

Traditionally, traffic classification relies on the port based 
method, which exploits transport layer information (source 
and destination TCP/UDP ports). However, this method has 
many limitations that make it quite imprecise and inefficient 
despite its extensive usage. Not all servers respect well-known 
ports conventions, malicious software can use well-known 
ports in order to let its traffic pass through port-based security 
restrictions, many peer-to-peer applications actively try to 
avoid classification using random ports, network tunnels can 
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be instantiated using well known ports in order to avoid 
imposed traffic restrictions, IP payload encryption hides the 
port numbers.  

An evolution of this approach relies on payload-based 
inspection that is used in most commercial devices and is 
declined in different flavors [4]. This technique shares some 
of the problems of port-based classification (encrypted 
protocols, tunneling) and is perceived as really expensive 
from the computational point of view. Other classification 
techniques that aim at identifying applications based on their 
behavior as inferred from observed traffic (statistic traffic 
analysis or heuristic analysis) are being studied, but are far 
from being ready for commercial deployment. 

This paper presents a new classification technique that, in 
some respect, is orthogonal to the abovementioned 
mechanisms. Our approach, called service-based 
classification, exploits information about services previously 
discovered in the network in order to classify traffic flows. 
Main advantages of this method are robustness, accuracy, a 
limited use of processing power, reduced memory 
requirements, and the capability to use any classifier in the 
early stage of the classification (namely, the service 
identification phase). 

This paper is organized as follows. Section II surveys the 
most common classification methods available in the 
literature. Section III describes the service-based classification 
idea, while some details about our implementation are given 
in Section IV. Section V presents an evaluation of this 
technique and conclusive remarks are presented in Section VI. 

II. RELATED WORK 

Currently deployed network classification algorithms 
generally fall in one of two categories: payload based 
algorithms and behavioral algorithms. This section provides a 
brief overview of the state of the art in network traffic 
classification focusing on some of the most relevant 
algorithms in each category. 

Payload-based classification is applied by most commercial 
solutions for various purposes ranging from statistics to 
security, because it provides the best trade-off between the 
classification accuracy and the coverage in terms of number of 
recognizable protocols. A possibly deep inspection of data 
transported within packets is used to identify the flow packets 
belonging to and the application generating it. In fact, by 
inspecting the headers of the higher layer protocols, possibly 
up to the application layer payload, it is possible to precisely 
identify the protocol being used by the application and 
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possibly gather information on the type of traffic it generates. 
However, the correct identification of a protocol is not 
straightforward. One approach relies on searching for patterns 
or regular expressions that can uniquely identify each 
protocol; a database containing the description of each 
protocol is needed. Many payload based solutions have been 
proposed [2] [3], some coupled with an approach for 
describing network protocols in order to make classification 
code easy to reuse and update [5][6]: classification of 
additional protocols or new versions of existing protocols can 
be achieved by simply adding their description, without the 
necessity of any modification to the classification software 
itself.  

Known problems of payload based classification algorithms 
are (i) high sensitivity to packet loss and TCP/IP 
fragmentation and segmentation issues, (ii) hard and time-
consuming task of creating protocol signatures, that are 
crucial to the effectiveness of the solution, (iii) encryption 
and/or tunneling that hinders access to data contained into 
application layer headers and payloads, and (iv) significant 
requirements in terms of computational and memory resources 
that actually make traffic classification at high line rates 
difficult.  

Due to the high computational requirements of deep packet 
inspection, payload based classification algorithms usually 
limit pattern searching to the initial packets of each flow. 
According to this method, named Packet Based – Flow State 
in [4], once the protocol transported by a flow has been 
recognized, the flow identifier (i.e., the 5-tuple including IP 
addresses, ports, and transport layer protocol) and the 
corresponding application-layer protocol are added to a data 
structure in memory, often called session table, that is 
maintained as long as the flow is active1. The main critic 
moved toward these methods is about the memory usage for 
maintaining flow state information; in case of large networks, 
the size of such per-flow state grows significantly and this 
might become an issue. Furthermore, additional memory is 
required because pattern matching usually relies on regular 
expressions, which are well-known for their memory 
consumption due to the necessity of maintaining graph-based 
structures representing Deterministic Finite Automata. On the 
other side, also processing requirements may be problematic 
due to regular expression matching and to session table 
management (lookup, insertion, deletion, etc.). These 
problems become even worse in the Message Based – 
Protocol State flavor [4] of the payload-based method 
(implemented in Binpac [6] and SML [7]), that needs to 
rebuild the entire application-layer message to enable the 
analysis of the entire data in order to achieve the precision 
required for security appliances. In this case, the amount of 
information to be maintained grows even more, as do 
processing requirements for session reconstruction and 

 
1 While the session table is usually associated to payload-based techniques, 

in fact it has a broader usage. Particularly, all methods that rely on session 
identification (no matter how this identification is done) need to maintain this 
information in memory. 

application-layer processing, although some smart method can 
be devised in order to decrease this complexity [18]. It is 
important to notice that [4] demonstrates that the simpler 
Packet Based – Flow State approach is in most practical cases 
sufficient for the vast majority of applications. 

Another approach in traffic classification relies on 
behavioral techniques, whose main assumption is that each 
application is characterized by some specific behavior. 
Applications can then be identified by just gathering 
information at different levels (e.g., packet inter-arrival time, 
jitter, packet size, etc.) and analyzing it (e.g., from a statistical 
point of view), often without inspecting protocol headers and 
application data transported. Therefore behavioral algorithms 
are not affected by any of the shortcomings of payload based 
algorithms related to information hiding (e.g., by encryption) 
or camouflage (e.g., by using ports typically deployed by 
specific services). Specifically, behavioral algorithms work 
the same way independently of whether flows use encrypted 
payloads or not. Unfortunately, behavioral algorithms have 
some common limitations; first of all, most of them typically 
require a pre-classified traffic trace in order to train the 
classifier before it can start working. These pre-classified 
traces are usually classified using payload-based methods, 
manual inspections and human experience; although there are 
few guaranties about the actual precision of these pre-
classified traces, all measurements are done starting from an 
imprecise base. Furthermore, a wide class of behavioral 
methods needs to be trained in exactly the same conditions of 
the environment where they are going to be deployed, which 
often prevents the training sets obtained in one site from being 
usable as a trainer set in other places. Additional problems are 
related to the limited temporal validity of the training set due 
to network reconfiguration and long term variations, and to 
the fact that these algorithms often need to observe a fairly 
large number of packets before they can work properly. 

Behavioral algorithms can be further organized into three 
sub-categories. Machine learning algorithms [9] [10] [11] 
[12] [13] deploy advanced analysis techniques, such as 
clustering algorithms, to divide network flows in different 
classes based on information devised without inspecting 
application layer payload. Statistical algorithms [14] process 
statistical properties of network flows through mathematical 
function, like Bayesian filters, in order to derive a statistical 
“fingerprint” for each application. Typical data analyzed by 
these algorithms are round-trip-time, inter-arrival time, inter-
arrival jitter, mean packet size. Heuristic algorithms evaluate 
how each host act within the network in order to identify the 
applications that hosts are running. Some examples of data 
analyzed by these algorithms are the order of 
requests/responses produced by a host, number of hosts 
contacted, number of ports deployed. 

Among heuristic algorithms, BLINC proposed by Faloutsos 
et al. [8] introduces the idea of looking at the “social” 
behavior of each host. In fact, the type of traffic a host is 
producing is devised from the observation of network and 
transport layer behavior such as how many hosts it contacts or 
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it is contacted by, how many ports it uses for accepting and 
producing traffic. The behavioral analysis is carried at social, 
functional and application level, and contributes to create the 
so called graphlets graphically describing the behavior of a 
host. Particularly, graphlets show the number of distinct 
source and destination ports used, and the number of hosts 
contacted; the basic assumption is that each application is 
characterized by a certain type of graphlets. All information 
needed to create graphlets can be devised from the transport 
and network layers, thus avoiding application layer payload 
inspection and its shortcomings and limitations. A classifier 
that applies this algorithm is first trained by analyzing pre-
classified traffic traces to devise application-specific 
graphlets. Then, new flows can be classified by comparing the 
corresponding graphlets with the ones obtained from the pre-
classified traces. Early classification is obviously not possible 
with this method because a certain number of interactions 
must be observed in order to understand which graphlet best 
represents the behavior of a host. Results look promising, but 
the solution still suffers from some limitations. Graphlet 
identification is quite difficult and actually done with human 
support by observing various types of traffic in order to 
identify common behaviors within the same kind of 
application. Moreover, it is difficult to add a new graphlet and 
making sure it does not overlap with others. Some abnormal 
behaviors could be classified only by interlacing multiple 
graphlet and this is not supported by the current solution. 
NATs are a big problem for this method because they are seen 
as hosts that summarize the behaviors of all the hosts behind 
them. Also protocol coverage has drawbacks, since often only 
the protocol family (e.g. peer-to-peer) can be identified 
precisely, instead of the actual protocol. Finally, the precision 
of this method is still lower than the precision offered by 
methods that use payload inspection for classifying traffic. 
Summarizing, the idea is interesting, but it is complicated by 
practical issues involved in handling graphlets.  

The idea introduced by Faloutsos et al. that an application 
has a distinguishable behavior is one of the inspiring 
principles of service-based classification. However, while 
BLINC uses specific social behaviors characterizing an 
application in order to classify the packets of a flow as 
belonging to that application, the solution proposed in this 
work relies on the fact that most applications display the 
specific behavior of offering a service at fixed “network 
coordinates”, i.e., at a specific port on a specific host. 
Consequently, once the application providing a certain service 
is identified, the packets of a flow directed to its “network 
coordinates” can be classified as belonging to that application. 
Hence, although the two approaches have a common inspiring 
idea, the resulting solutions are very different. 

An idea similar to our proposal of service classification was 
already used in previous works, namely [16] and [16], but 
with some noteworthy differences. [16] proposes to 
subsequently apply several classification techniques with 
growing computational complexity, until a flow is classified 
and to keep a history of already classified flows to build a 

knowledge base for particular host/port combinations that can 
be used to validate future classification results by checking 
their conformance with roles previously observed for the same 
host. In essence, the historical data collected by the solution 
presented in [16] are not used to classify new flows, but can 
be used to validate the classification outcome of the chain of 
adopted classification techniques. A similar approach can be 
found in [16], which proposes a statistical method to classify 
peer-to-peer traffic; among the three techniques jointly 
deployed, one consists in keeping a table that contains IP 
addresses of hosts that are at some point identified as nodes of 
a peer-to-peer overlay, or that are identified as known 
(traditional) services (e.g., HTTP server). All flows whose 
packets contain an IP address included in the P2P table are 
flagged as “possible P2P” and analyzed in more detail. The 
main idea is that the type of service a host is currently running 
can be inferred by looking at the host history (i.e. the sessions 
generated by the host and the number and type of services 
contacted in the past). Hence, this approach uses the host 
history to classify new services, while our proposal relies on 
other classification algorithms for the initial classification, 
being the service-based classifier used only in the following 
classification of that service. 

In conclusion, while payload-based methods are usually 
precise enough and offer excellent coverage (in terms of 
protocols detected), they are expensive from the memory and 
computational points of view. Other approaches are 
promising, but usually limited in terms of coverage, and often 
suffering from many limitations due to their training 
requirements. Other methods based on host history are in 
some sense similar to our work, but they failed to fully 
understand and exploit the power of service-based 
identification. The service-based approach presented in this 
paper is a breakthrough technology that includes as many 
advantages as possible from both categories while reducing 
disadvantages. Specifically, the objective is to obtain the high 
classification precision of payload based methods, while 
avoiding their limitations related to segmented signatures, 
encrypted payload, and memory requirements. 

III. SERVICE-BASED CLASSIFICATION 

Service-based classification is a surprisingly simple idea 
that relies on the observation of how hosts usually interact and 
on the assumption that certain hosts, usually called servers, 
perform similar interactions, usually offering a service, with 
multiple other hosts over a certain time span. This assumption, 
which provides the foundation of our method, will be verified 
through experiments on real network data in Section V.B.  

According to the classic client-server paradigm, a 
potentially large number of hosts connect to a single one to 
obtain a service. In this situation it is easy to identify the 
server as a main actor with a long lasting role as it usually 
offers the same service at the same “network coordinates” (IP 
address and TCP/UDP port) for a long time. The basic 
assumption in service-based classification is that knowing 
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which service is offered at an IP address/port pair, a classifier 
can infer that all sessions directed toward that pair will access 
such service. For example, if the classifier knows that host 
www.polito.it is running a web server on TCP port 80, it 
can classify all sessions established to this IP address/port pair 
as HTTP traffic. It is important to notice that such a classifier 
does not work like a port based classifier. While the latter 
assumes that a session is transporting HTTP because it is 
connected to TCP port 80, a service-based classifier knows 
that www.polito.it is running a web server on TCP port 
80. When the classifier discovers a service, it stores the triple 
identifying it — i.e., IP address (of the server), TCP/UDP port 
(at the server), and transport protocol in an appropriate 
structure in memory called Service Table.  

The same principle can be applied to hosts running peer-to-
peer applications. In this case the application has a client part 
and a server part running simultaneously: the client part of a 
peer establishes sessions to the server part of other peers 
awaiting for connections at a specific port. How this port is 
assigned and communicated to the other peers depends on the 
specific application and protocol, but the key point is that the 
port used to receive connections from other peers usually does 
not vary very frequently and is reused many times for the 
same instance of the peer-to-peer application. So when the 
client part of a peer connects to the server part of another peer 
to transfer information, the service-based classifier identifies 
the server part of such session as a service and stores the 
associated triple in the service table. Also peer-to-peer 
applications that use the same port for both the server part and 
the client part, such as Skype for example, are handled 
properly. After a peer A has received a connection to its server 
part, a triple containing its IP address and port is created in the 
service table as a service. When its client part connects to 
another peer B, the service-based classifier classifies the 
corresponding packets according to either A’s service entry or 
B’s service entry. Although classification based on A’s 
service entry is in principle mistaken as packets are being 
exchanged as part of a session whose server side is B, the 
packets are anyway correctly classified as belonging to the 
peer-to-peer application at hand. When an application shows 
such behavior (which is not uncommon among P2P software) 
our approach can be extended by adding also the client-side of 
a session to the service table, which will become the server 
part in a later data exchange, for all traffic belonging to that 
application.  

It is important to notice that finding out which service is 
running at a certain IP address/port pair (i.e., service 
identification) is orthogonal to the service-based approach: in 
principle, any method can be used to perform service 
identification (payload-based, heuristic, or even manual 
inspection, and more). The service-based approach assumes to 
know precisely the service associated to an IP address-port 
couple and from that point on it will guarantee a precise 
identification of that traffic. Obviously, service identification 
is not straightforward and its effectiveness has an impact on 
the outcome of service based classification, as discussed later. 

Service-based classification features interesting advantages 
over other classification methods. Encrypted traffic at 
application layer can be properly classified provided that the 
corresponding service has been previously identified, i.e., it 
has an entry in the service table. It offers pattern segmentation 
transparency, i.e., a flow can be properly classified even 
though protocol identifying patterns are split across multiple 
packets, avoiding the complexity of reassembling application 
data units. A service-based classifier needs to maintain only 
information about services (i.e., IP address, port, transport 
protocol and service offered) independently of the number of 
traffic flows actually using such services; hence it has limited 
memory requirements. The limited amount of state 
information kept by a service-based classifier impacts (i) 
scalability, performance in terms of (ii) lookup time and (iii) 
hardware implementations that can rely on faster on-chip 
memory. Classification of a packet belonging to a known 
service requires a single lookup on three fields (IP address, 
port and transport protocol) in a relatively small lookup table, 
therefore with low computational cost. Moreover, service 
identification, which might have higher computational cost, is 
expected to be performed only on a small fraction of the 
packets and it can be even performed offline; in any case, 
service identification is orthogonal to the service-based 
method. Finally, as we said, service-based classification is 
among the few methods that guarantees early classification, 
i.e. being able to classify even the first packet (e.g., a TCP 
SYN) within each session, while other methods need to 
process at least the first few packets within each session. 

Service-based classification also has some potentially 
critical issues. Its effectiveness, in terms of minimizing both 
misses and wrong matches, and also its performance heavily 
depends on identification of network services that must be as 
accurate as possible. A wrong entry in the service table leads 
to wrongly classifying a potentially large number of flows, 
while a missing entry possibly leads to both a failing 
classification of a large number of flows and deploying 
significant amount of computational resources in an effort to 
identify the service being used, e.g., by deeply inspecting the 
corresponding packets. Consequently, a successful service-
based classification is tightly coupled to a robust and effective 
service identification solution, which, as we said, is 
orthogonal to service-based classification.  

In addition, not keeping information about individual 
sessions, service-based classification is not suitable for 
applications that require such granularity level, such as, for 
example, per-session enforcement of QoS policies. A service-
based classifier can be customized for such applications to 
keep an additional session table for those services requiring 
so, which is a simple extension that can be added to any 
implementation. 

Other potential issues include dynamic sessions and 
proxies. With respect to the first problem, some applications 
(e.g. FTP, SIP) use a control session to negotiate the port of 
the data transfer, resulting in a data-transfer session that 
cannot be associated to a stable service based on its ports. In 
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order to classify these sessions, a deeper inspection of packets 
belonging to the control session is required since data transfer 
is usually made of raw data, making problematic the 
classification through a common traffic pattern. In order to 
cope with these sessions, the implementation of a service-
based classifier must be able to inspect control packets 
belonging to these well-known applications, as several 
modern network devices (Firewall, NAT, etc.) do. 

The second problem is related to proxies (and SOCKS 
servers), which handle the access to various types of services 
(HTTP, FTP, etc.) on behalf of different clients using the 
same transport-layer port. The service-based classifier has no 
problem in classifying traffic from these servers to the target 
service, but it is unable to distinguish the service contacted 
when analyzing the traffic between clients and the 
proxy/SOCKS server, which can be done only by application 
data inspection. Like for services that use dynamic sessions, 
the service-based method can be integrated with a callback 
function that performs deep inspection on packets exchanged 
between clients and their proxy and socks servers in order to 
identify each flow accessing a specific service. 

Finally, the service-based classifier is not effective with 
traffic encrypted at IP level, e.g. with IPsec. 

IV. IMPLEMENTING A SERVICE-BASED CLASSIFIER 

Although the service-based classifier looks simple and 
elegant, some issues need to be addressed to make it working 
properly. This section presents such issues and gives some 
insight in how they have been addressed in our 
implementation. Given the generality of the service-based 
method, other implementation strategies can be adopted. 

A. Service identification 

Given the expertise and previous work of the authors, a 
payload-based implementation of a service identification 
module has been an obvious choice. In particular, an existing 
packet processing engine based on the Network Packet 
Description Language (NetPDL) [1] [5] has been reused in the 
implementation of the service identification module. NetPDL 
is an application-independent packet format description 
language that enables the creation of a generic protocol 
description database: the NetPDL database, in fact. Although 
it includes only packet header formats and does not support 
the description of protocol temporal behavior (e.g., a protocol 
state machine), it has proved being extremely effective and 
robust with respect to traffic classification [4], thanks to an 
extension that enables management of lookup tables, 
originally used to maintain transport-level sessions [5]. The 
high flexibility of NetPDL makes the engine suitable for the 
implementation of the service-based classifier as well, in 
addition to the payload-based service identification module.  

The main modification made to the NetPDL engine is the 
addition of some new tables, such as the service table that 
contains information about services. The process starts with 
an empty service table, while traffic is processed by extracting 
IP addresses and ports from each arriving packet. Since the 

server side of the communication cannot be inferred on a 
packet-basis, the service table is looked up twice: once with 
the source identification (source IP/port) and once with the 
destination identification. If one of these lookups is 
successful, the packet is classified through the service-based 
method. Otherwise, as depicted in Figure 1, the service 
identification module performs a payload-based classification 
to possibly introduce a new entry in the service table 
containing the IP address and the transport layer port used by 
the server side of the session and the application protocol 
associated. Any new packet toward this “known service” can 
subsequently be classified directly through the information 
kept in the service table as described above without any 
further processing (e.g., payload inspection). Please note that 
the identification of the server side of the connection is not 
straightforward and will be discussed in Section IV.B. As time 
passes, more and more traffic will be classified by the service-
based method since the service table will include an increasing 
number, possibly most, of the services active in the network. 
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Figure 1. Service identification. 

B. Distinguishing clients and servers 

The server side of a TCP session can be easily identified by 
observing the SYN and ACK flags during in the three-way 
handshake of the TCP protocol. In our implementation we use 
an additional lookup table, called Candidate Service Table, in 
which a new entry is added with the IP address and port of a 
host that accepted an unclassified TCP session by generating a 
TCP packet with both the SYN and ACK flag enabled. The 
Candidate Service Table is required to keep track of the server 
side of a session because the service is possibly identified, 
e.g., through payload inspection, once the session has been 
opened, i.e., when the SYN/ACK flags, used only during the 
initial handshake phase, are not available to enable the 
identification of the server side. When the service is finally 
identified, the server information is moved from the candidate 
service table the service table. 

Entries of the Candidate Service Table are subject to a very 
fast ageing (about ten seconds [19]) in order to avoid their 
number to explode over time due to sessions opened by 
unidentified services, unsuccessful handshakes, or unused 
opened sessions, as in cases of malicious activity such as SYN 
flooding and port scanning. 

With UDP services identifying the server is different since 
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explicit information like the SYN flag in the TCP case is not 
available. Although, especially with the growing adoption of 
broadband multimedia applications, UDP is expected to 
significantly increase its traffic share, possibly becoming 
predominant, this paper focuses on TCP traffic, which as of 
today accounts for the vast majority of data. UDP traffic 
classification, that requires a non-straightforward extension of 
what is proposed in this work, is left to a companion future 
paper.  

C. Managing the service table 

Besides properly populating the service table, an important 
issue is the prompt elimination of service entries once the 
corresponding service is no longer provided. This is important 
in order to avoid the explosion of the number of service 
entries and that a service offered only temporarily leads to 
classification errors. One possible approach is to purge an 
entry that does not make a hit for a certain amount of time, 
hereafter referred to as service inactivity timeout. As a further 
refinement, the service inactivity timeout can be differentiated 
for different service classes. For example, some services are 
offered over a long time period, possibly permanently, even 
with a low connection rate, and their entries are given a long 
service inactivity timeout. A typical example of this service 
class is an SMTP server contacted only few times in a day, but 
providing its service over a very long time period. Vice versa, 
other services have a naturally short life and the inactivity 
timeout associated to their entry may be shorter. Typical 
examples are peer-to-peer applications. 

Assigning distinct service inactivity timeouts to different 
classes of services, although not strictly necessary, is useful in 
avoiding multiple re-identification of long-term services, e.g., 
through costly deep packet inspection. On the other hand, 
assigning an entry to the long-term service category is critical 
because if the service is not actually long-term or it has been 
wrongly identified, the entry can lead to persisting 
classification errors. Consequently, there should be a certain 
level of certainty about service before categorizing it as a 
long-term one. One possible policy is to set any newly 
identified service “under observation”: its entry is categorized 
as short-term and some additional checks are performed on 
packets classified according to the entry. For example, 
payload inspection can be executed on randomly chosen new 
sessions. After a certain period of observation confirming the 
initial identification, hence the long-term nature of the service, 
the corresponding entry can be categorized as long-term. 
Another policy can be to categorize services as long-term only 
through explicit (e.g., manual) configuration.  

With respect to the scalability of service based 
classification, it is worth noticing that the management of the 
service table is independent of the classification process and 

can be implemented as a distinct process running separately 
from the core classification process. 

V. EXPERIMENTAL EVALUATION 

This Section provides an experimental evaluation of 
service-based classification, including some problems that 
arise in its implementation. The next section first devises the 
benefits expected by the deployment of service-based 
classification from an analysis of network traffic itself — i.e., 
not based on the results of particular classification 
experiments — which provides a more general assessment of 
the potential of service based classification. Then, the results 
of specific classification experiments are reported to 
substantiate such general assessment. 

A. General Assessment 

Before implementing our service-based classifier we 
collected a set of session-related statistics on the link that 
connects our University to the Internet to assess the potential 
benefits of service-based classification in terms of memory 
occupancy, i.e., if the number of services was really smaller 
than the number of sessions. These measurements, done using 
Tstat [15] and lasting several days, wanted to determine the 
maximum number of service entries required to classify all the 
traffic with a service-based approach, compared to the number 
of session entries required by a classifier based on session 
identification. The obtained results must be intended as a 
lower bound of the session/service table size since they 
account for the session/services present and actually active at 
any given time. A TCP session is considered closed when a 
FIN or RST packet is observed; in case of abnormal 
termination, a 10-minutes session inactivity timeout is used to 
declare a session terminated, as suggested in [22] and 0. 
Analogously, services are considered closed if no traffic is 
observed in an idle period of the same duration. 

Figure 2 shows, for each minute, the number of active 
traffic sessions and the corresponding number of services on 
the uplink (100 Mbps) of our university network (about 6,000 
hosts) over a 7-day period. The average number of active 
traffic sessions is 80,000 with peaks of 180,000, while the 
total number of services never exceeds 10,000. Figure 3 
shows the same figures for a traffic trace2 from the MAWI 
wide traffic archive [21]. The average number of active 
session is 120,000 with a peak of 380,000, while the total 
number of services never exceeds 10,000. The average on the 
whole observation period of the session to service ratio is 
about 20 for both traces, which means that a service table 
requires roughly 20 times fewer entries than a session table. 
Furthermore, a service entry is smaller than a session entry, 
thanks to the smaller number of information that has to be 
stored. This is beneficial in terms of memory requirements as 
well as both processing requirements and performance for 
session/service information look-up.  

Although these numbers show clearly the advantage of the 
service-based classification (at least in the tested 

 
2 This trace was captured on March 19th, 2008 on the sample-point F, a 

150Mbps trans-pacific backbone link. 
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environments3), they are derived under the assumption that 
services are stable over time. This assumption will be 
empirically demonstrated in Section B. 
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Figure 2. Services vs. sessions on the University Torino network. 
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Figure 3. Services vs. sessions on a trans-pacific link. 

a) Experimental setup 

The service-based classifier implementation described in 
Section IV has been tested in different experiments; the results 
obtained with two of them (more details on these experiments 
are shown in Table 1) are presented in this paper. The first 
experiment contains three days of traffic related to a single 
subnet of our University during a week-end (hereafter called 
Weekend trace). The second one is a twelve hours analysis of 
the traffic on the whole campus network during a working 
day, hereafter referred to as WorkingDay trace. The Weekend 
trace is particularly challenging from the classification point 
of view because it contains mainly eDonkey peer-to-peer 
traffic that is known to be difficult to classify; WorkingDay, 
instead, includes mainly HTTP traffic. Although our traces 
contain all kinds of traffic, as previously discussed, this work 
focused on TCP sessions only. Traffic was processed on an 
Intel Dual Xeon (2,4GHz, 512KB cache, 1GB RAM, 4 disks 
for an aggregated space of 900GB) equipped by an Endace 
DAG card for packet capture, ensuring that no packets were 
 

3 The gain guaranteed by the service-based method may be more limited in 
case of different network conditions. We may speculate that the session vs 
services ratio may be smaller in case of a network with large percentage of 
P2P traffic (e.g. an ISP POP). However the authors are not aware of any 
publicly available (and recent) trace to verify this speculation. 

dropped during the capture process. Traces were analyzed 
with both a payload-based classifier based on the NetPDL 
described in Section IV.A and a service-based classifier that 
uses the same payload-based classifier for service 
identification as described in Section IV. The comparison of 
the results obtained with the two classifiers shows benefits in 
terms of both memory usage and classification precision when 
service-based classification is combined with an existing 
classifier. Given that our service-based classifier 
implementation is not optimized for performance, it cannot be 
meaningfully deployed for an assessment of classification 
rate, which in any case strongly depends also on the 
underlying hardware. Such important assessment is left for 
future work. 

 
TABLE 1. SUMMARY OF THE TRACES USED IN OUR ANALYSIS 

Trace Description 

Weekend 65 hours trace (from 11/05/2007 – 2.00 pm to 
14/05/2007 – 7.00am), 89 hosts in the internal network, 
66M packets (69% TCP), 35 GB traffic (86% TCP) 

WorkingDay 12 hours trace (from 11.00am to 11.000pm on 
20/12/2007), 5649 hosts in the internal network, 583M 
packets (88% TCP), 465 GB traffic (95% TCP) 

 

B. Service stability 
As mentioned in Section III, the fundamental assumption of 

the service-based classifier is the stability of services. In fact, 
a service-based classifier can misclassify packets when either 
(i) a service has not been properly identified or (ii) a new 
service is offered at the same “network coordinates” where 
another service was previously offered. The last phenomenon 
is related to service stability. Given that (i) is a shortcoming of 
the classifier used for service identification and is orthogonal 
to the service-based classifier itself, service stability is the key 
factor impacting the accuracy of service-based classification. 

In order to prove this assumption, we used a tool jointly 
developed at University of Brescia and Politecnico di Torino, 
which installs a probe in each host and logs on a centralized 
server the name of the application that created each network 
socket on the host on which it is running. By deploying it on 
all the hosts of a network used for the evaluation of a 
classifier, it is possible to precisely know which application 
generated each session. The tool has been installed on 11 
hosts (with Linux, Windows and MacOS-X operating 
systems, running several applications; among the other Skype, 
Emule, Joost, uTorrent), the traffic produced has been 
captured for 4 days and the traffic traces have been analyzed 
by a payload-based classifier. 

 
TABLE 2. APPLICATION MONITORING VS. SERVICE-BASED CLASSIFICATION 

Observed sessions 40503 

Observed services 21675 

Observed applications 81 

Services in which sessions are classified 
univocally as belonging to the same 

21042 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

8

application 

Services in which sessions are classified 
univocally as belonging to the same 
application or as “unknown” traffic 

633 

Services in which sessions are classified 
as belonging to different applications by the 
payload-based classifier (or by manual 
inspection) 

0 

 
Table 2 shows that the payload-based classifier identified 

the vast majority of the sessions associated to a given service 
as belonging to the same protocol. In a small minority of 
cases, some sessions were unclassified, mostly due to 
signature-related problems (e.g., a signature split across two 
packets), while in a very limited amount of cases we found 
different classification results associated to the same services. 
In the latter case we further analyzed these sessions with a 
manual inspection and we verified that these mismatches were 
due to an error of the payload-based classifier. These results 
verified that classification results produced by the payload-
based classifier are always coherent with the application that 
created. The overall result was that we found no cases in 
which sessions belonging to different protocols were referring 
to the same service, which provides a strong (albeit 
experimental) foundation to our method. In other words, since 
all the services analyzed do not change during their service 
time, it is possible to state that the classification error 
introduced by a service change during its lifetime is, to say the 
least, really rare. 

C. Service activity and service inactivity timeout  
Service lifespan must be taken into consideration in the 

management of the service table, i.e., in the choice of the 
service inactivity timeout. On the one hand, the larger the 
number of services listed in the table (as it can be obtained 
with a long service inactivity timeout), the larger the amount 
of traffic possibly classified by the service-based classifier. 
On the other hand, a long service inactivity timeout may lead 
to a dramatic increase of the size of the service table, reducing 
the scalability of service-based classification. Moreover, 
keeping entries in the service table for a long time amplifies 
the impact of service identification errors as each 
misclassification (e.g., a pattern mismatch occurs when 
identifying the protocol deployed by the service) potentially 
impacts the classification of all packets sent and received at 
the corresponding network coordinates (i.e., IP address/port 
pair). It is worth mentioning that identification error 
probability can be reduced by improving the deployed service 
identification method, which is independent of service-based 
classification. Also, multiple classifiers with different 
properties (i.e., strengths and shortcomings) could be used in 
parallel to provide service identification. These aspects, 
although significant and relevant to the overall performance of 
the classification process, are outside the scope of the current 
work. Instead this Section aims at studying the activity level 

of services to gain a better understanding on how to set the 
service inactivity timeout. 

Based on the authors’ experience in analyzing network 
traces, service can be categorized in three classes with respect 
to their activity level and lifespan, i.e., the overall time frame 
during which they show some activity. One-shot services are 
active for a very short time (a second or less), and are never 
re-contacted. Other services, named intermittent services, are 
active repeatedly very shortly each time; these services are 
usually contacted by few hosts rarely and for short time 
periods and their sessions are somewhat distributed along the 
entire trace, i.e., they have a rather long lifespan. Continuous 
services are characterized by rather long activity periods, are 
usually contacted frequently, and are expected to generate 
most of the traffic. Figure 4 provides a graphical 
representation of the activity time of some representative 
services; each horizontal line represents the time period when 
the service is active. Classes with ID from 1 to 6 are 
continuous services, with a long period of activity without 
breaks. Services with ID from 7 to 12 are one-shot services 
since their activity time is very short and they do not reappear. 
The last group of services, with ID from 13 to 18, are 
intermittent services.  
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Figure 4. Graphical representation of per-class service activity for trace 
WorkingDay. 

 
Intermittent services are the most critical with respect to 

setting the service inactivity timeout. If their inactivity periods 
are longer than the service inactivity timeout, they have to be 
re-identified each time they become active again, thus 
introducing overhead and reducing performance. 

In order to characterize service duration and have precise 
information about the lifespan of each service, we modified 
the service based classifier in order to log the insertion and 
deletion of services in the service table, which will provide 
precise information about the lifespan of each service. Figure 
5 shows a histogram of the lifespan of services in trace 
WorkingDay highlighting the percentage of services that have 
been identified when running a service-based classifier with 
two different values of service inactivity timeout: 10 minutes 
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and 60 minutes4. Some bars are made up of a continuous 
portion and a dashed portion: the dashed portion takes into 
account of the services that have already been identified in the 
past and that appeared again after the service inactivity 
timeout. As shown in Figure 5, the vast majority of the 
services belonging to the (30-120] seconds category (with 
inactivity timeout of 10 minutes) lasted for some time, then 
disappeared from the trace for more than 10 minutes, then 
appeared again in the trace, although their total lifespan 
(including their inactivity time) falls within this bin. In this 
example, intermitted services belonging to the (30-120] bin 
accounted for about 6% of the total amount of observed 
services and are by far the vast majority of services belonging 
to that bin. Our analysis confirms that overall 41% of services 
have to be re-identified with a 10 minute service inactivity 
timeout versus 31% with a 60 minute service inactivity 
timeout. In summary, the 60 minute service inactivity timeout 
provides little improvement as far as service re-identification 
— mostly concentrated among services with lifespan between 
30 and 120 minutes, as shown in Figure 5 — and a significant 
percentage of services with a large lifespan (greater than 120 
minutes) still requires re-identification. On the other hand, the 
60 minute service inactivity timeout has a serious impact on 
memory usage (as demonstrated in Section V.D), since many 
services that will never have traffic again are retained in the 
service table for a long time. 
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Figure 5. Service lifespan distribution for trace WorkingDay 

In order to limit the performance impairments caused by 
intermittent services with long lifespan and rather short 
activity periods, service table entries could be assigned to 
different classes, each characterized by a specific service 
inactivity timeout, as discussed in Section IV.C. Analysis over 
longer periods of time and a wider range of network scenarios 
would be required to further substantiate what has been 

 
4 The sum of intermittent and stable services of each bin should not differ 

irrespective of the inactivity timeout used. This would be true only if the 
payload based classifier used to identify services is able to classify services 
analyzing any session produced by them. Unfortunately this is not true, 
especially for services that produce encrypted sessions. Thus some services 
are missing in some bins because the classifier was not able to classify them 
when they reappeared after an idle period longer than the inactivity timeout. 

presented here and provide an insight on long term service 
change dynamics. However, the experiments reported in this 
section demonstrate the importance of the service inactivity 
timeout and their outcome can be used as a general guideline 
for an algorithm to dynamically adjust the inactivity timeout 
over time depending on the service type. 

D. Ageing of service table entries 

As shown in the previous section, the service inactivity 
timeout associated to service table entries can impact the 
performance of the classifier. We analyzed several traces with 
a payload-based classifier and with a service-based one 
configured with a service inactivity timeout of either 10 
minutes or 60 minutes; Figure 6 shows the classification 
results obtained on trace WorkingDay. No significant 
differences can be observed in terms of classification results 
with the two service inactivity timeout configurations: the 
overall number of packets classified based on a service table 
varies from 81% to 85%, which is a reasonably small 
improvement. Furthermore, the variation in terms of 
unclassified traffic is negligible, varying from 4.76% to 4.45% 
(in terms of number of packets) when changing the value of 
the service inactivity timeout5. This means that a 10 minute 
aging time for service table entries is a good trade-off because 
it to assures high performance and low memory requirements. 
Moreover, it means that the payload-based classifier does its 
job nicely and it is able to re-classify new sessions that do not 
have a corresponding entry in the service table. 
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Figure 6. Classification results on trace WorkingDay. 

An important observation is that simply increasing the 
service inactivity timeout may not be a good idea, since we 
may end up filling the service table with entries related to one-
shot services or services that are anyway not any longer 
active, which will never appear again in the future. This is 
evident in Figure 7 that shows an almost four-fold increase of 
the service table size when changing the service inactivity 
timeout from 10 to 60 minutes— without any appreciable 
advantage in terms of classified traffic, as shown by Figure 6. 
Therefore, a 10 minute service inactivity timeout has been 
used in the experiments producing all the results presented in 

 
5 The increase in the amount of classified traffic when using larger timeout 

will be explained in Section V.E. 
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the rest of the paper. 
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Figure 7. Service table size with different service inactivity timeouts on trace 
WorkingDay. 

It is worth noticing that the vast majority of the traffic is 
generated by a fraction of all services. It may be an interesting 
idea to keep only such services in the service table, which 
enables to classify most of the traffic.  Figure 8 shows the 
cumulative quantity of traffic generated by each service in 
both the WorkingDay and Weekend trace, where services have 
been sorted from in order of decreasing amount of generated 
traffic. We can see that, assumed equal to 1 the amount of 
traffic that we are able to classify with the service-based 
method (using a 10-minutes timeout and a payload-based 
classifier for detecting the service once it appears), we are 
able to classify 90% of that traffic with only 3.8% of the 
number of services present in the entire WorkingDay trace 
(3344 out of 87815), and 2.7% in case of the Weekend trace 
(338 out of 12714). These numbers can also bring to the 
conclusion that, once identified the most important service 
contributors within the network, these services alone enable 
the classification of the vast majority of the traffic. Obviously, 
this has a major impact also on scalability, which is greatly 
improved by limiting the service table to only the most 
verbose services. While these numbers are somewhat expected 
(for instance, the splitting of traffic sessions among mice and 
elephants is well known in the literature [20]), in our case this 
represents an even more important gain. For instance, sessions 
terminate after a relatively limited time, while services may 
stay stable for month or years (e.g., the Google website), 
hence the service table can even contain entries that must be 
verified only occasionally. 
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Figure 8. Cumulative classified traffic; services are ordered starting from the 
one that generates the most part of the traffic. 

E. Accuracy 

Our tests show that service-based classification offers an 
improvement in classification accuracy over results obtained 
with the original payload-based classifier. For example, trace 
Weekend contains a significant amount of traffic generated by 
eDonkey that hinders payload-based classification when 
application-layer data is encrypted. The payload-based 
classifier recognized only a small percentage of the flows 
generated by these applications, e.g., some sessions that are 
occasionally sent in clear and that represent special cases. For 
example, Skype sometimes produces packets that are only 
partially encrypted and consequently can be properly 
inspected and classified; similarly, not all eDonkey messages 
are encrypted. In all the other cases, the payload-based 
classifier is unable to identify the protocol transported and it 
marks flows as unknown, as it is shown by the high 
percentage of unknown traffic in Figure 9. Experimental 
evaluation also showed another problem related to the 
completeness of the pattern database used by the payload-
based method. In fact, some unknown traffic is related to 
flows that use particularly rare or undocumented application 
level messages that are not part of the pattern database of the 
payload-based classifier. Service-based classification does not 
have this problem, because once a service has been identified 
thanks to the presence of some known signatures in 
application-level messages, following sessions are classified 
based on the network coordinates they are related to. This is 
confirmed by Figure 9 where the service-based classification 
leaves a much smaller amount of traffic as unknown, while 
classifies as eDonkey a much larger percentage of traffic than 
payload-based classification. Results reported in Figure 9 are 
referred to the percentage of packet classified; results are 
slightly worse in terms of bytes, in which the percentage of 
the unknown traffic is 11%. 
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Figure 9. Classification results of the Weekend trace with payload-based and 
Service-based method. 

Payload based classification on trace WorkingDay results in 
a low percentage of unknown traffic because the trace 
includes mainly HTTP traffic. However, service-based 
classification results in improved accuracy also on the 
WorkingDay trace. Figure 10 focuses only on the unclassified 
traffic of Figure 9 and shows how this traffic has been 
classified by the service-based classifier. For instance, among 
the 54% of unclassified traffic of the Weekend trace, about 
18% was eDonkey, 14% RPC (which is included in the 
“others” bin in Figure 9), and more. Manual investigations on 
a randomly chosen subset of classified flows confirm that the 
outcome of the service-based classifier is correct. 
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Figure 10. Improvement in classification accuracy; packets unclassifed by 
payload-based classifier and succesfully classified by the service-based 
classifier. 

While the improvements in terms of unclassified traffic are 
evident from previous graphs, a deeper analysis shows also 
that a non-negligible portion of the traffic classified by the 
payload-based classifier resulted wrong when re-classified 
with the service-based method, mainly due to applications that 
exploit tunneling techniques (e.g., Edonkey traffic 
encapsulated in HTTP). Figure 11 shows the percentage of 
packets that are classified differently by the payload-based 
classifier and the service-based one. More specifically, for 
each protocol X, positive values represent the percentage of 
packets that the service-based classifier assigns to X given 
that they were classified differently with the payload-based 
method (ΔSBC((CSBC == X) | (CPBC != X))). Negative values 

represent the amount of packets that were classified as 
belonging to X by the payload-based classifier, and that 
resulted no longer belonging to that protocol with the service-
based method (ΔSBC((CSBC != X) | (CPBC== X) ) ). In other 
words, being TSBC(X) the amount of traffic belonging to 
protocol X as classified by the service-based classifier, and 
TPBC(X) the amount of traffic classified by the payload-based 
as belonging to protocol X, we have: 

 
TSBC(X) = TPBC(X) + ΔSBC((CSBC == X) | (CPBC != X)) 

– ΔSBC((CSBC != X) | (CPBC== X)) (1) 
 
A precise analysis of the results shown in Figure 11 is 

problematic because, for sessions classified differently, we do 
not know which method returns the correct result. A manual 
inspection of some of these sessions (randomly chosen) 
showed that the vast majority of them were correctly classified 
by the service-based method; therefore we assume that the 
results of the service-based classifier are correct in the 
following discussion6. For trace Weekend, eDonkey sticks out 
as the most problematic protocol as more than 2% of the total 
amount of packets is not correctly classified by the original 
classifier, while for trace WorkingDay, HTTP and Bittorrent 
have the most significant values. Commenting these results is 
rather difficult; we can take the HTTP traffic present in the 
WorkingDay trace as an example. In this case, a deeper 
inspection shows that most of the false negatives of the 
payload-based classifier are due to the HTTP header split 
across several packets (e.g., related to new interactive services 
characterized by long URLs). In the meanwhile, false 
positives are mainly due to Bittorrent that was misclassified as 
HTTP due to its similarity in the application-layer header. The 
fact that values in Figure 11 are relatively small (e.g., 
compared to the unclassified traffic analyzed in Figure 10) 
shows that there are few disagreements between the two 
classifiers, i.e., both classifiers make few classification errors. 
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Figure 11. Migration of classification result. 

F. Scalability 

Scalability must be assessed in terms of memory and 
processing requirements. 

 
6 If this assumption holds, the second term of Equation (1) represents the 

false negatives of the payload-based classifier, while the third term represents 
the false positives. 
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From the memory standpoint, the number of entries 
required by the service table is more than one order of 
magnitude smaller than the number of entries required by the 
session table, as shown in Figure 2 and Figure 3. Moreover, 
each service entry is approximately half the size of each 
session entry. This large improvement is not mitigated by the 
necessity of some additional information such as the candidate 
service table, whose size is negligible (Figure 12). In fact, 
Figure 12 shows that the additional table required to keep 
track of the potential services (as presented in Section IV.B) is 
reasonably small (in average, one tenth of the service table), 
hence has a negligible impact on the memory requirement of 
the service-based classifier. Figure 12 shows also the number 
of entries in the service table when processing the 
WorkingDay trace. The average number of 5000 entries 
during daytime hours fits well with theoretical lower bound 
derived from Tstat analysis and shown in Figure 2 and Figure 
3. This confirms the goodness of our implementation of the 
service-based classifier. 
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Figure 12. Entries in the service and candidate service tables. 

From the processing side, the computational complexity of 
a classification solution is an important index of its scalability. 
Profiling done on our classification code (written in C/C++) 
confirmed that the cost for a lookup in the service table (i.e. 
the main cost associated to each packet by the service-based 
method) is 37 times lower than the cost for a pattern matching 
on the payload (9700 clock ticks against 2607). Although the 
asymptotic processing cost remains the same in both service-
based and payload-based classifier (in the unfortunate case in 
which each service is associated to a single session), in 
practical terms our method guarantees a speed-up of more 
than an order of magnitude at best. 

In summary, the performance and scalability improvements 
of service-based classification over payload-based 
classification is directly proportional to the percentage of 
traffic classified by the service table, i.e., without performing 

 
7 The pattern matching is calculated as the average cost for applying a 

regular expression on a packet that matches the input string itself, using a 
modified Boyer-Moore algorithm. Costs are significant higher (some order of 
magnitude) for non-matching packets and using the DFA algorithm. 
Measurements have been done using the pcre library. Lookup costs have 
been derived by creating a lookup table through the stl::map C++ STL 
template, which is implemented as a binary tree, and creating a table with 50K 
entries. 

payload inspection. Figure 13 shows that the average of such 
percentage is between 85% and 90% of the total number of 
packets for the Weekend trace, which is coherent with the 
results shown in Figure 98. This number becomes closer to 
100% (usually between 95% and 99%) when considering only 
TCP packets with payload, which means that the vast majority 
of traffic unclassified by the service-based method is related to 
very short sessions directed to previously unknown services 
(i.e., a typical pattern for peer-to-peer applications), in which 
the 3-way TCP handshake accounts for the most part of the 
traffic. Similar results were derived from the WorkingDay 
trace, even if they are really different in term of time period 
observed and number of hosts considered. 
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Figure 13. Percentage of packets classified with the service-based method 
(Weekend trace). 

VI. CONCLUSIONS 

This paper presents a new idea for traffic classification, 
named service-based classification, that is, in some respect, 
orthogonal to the other classification techniques. This method 
introduces also in the traffic classification arena the concept of 
fast path, through which the vast majority of the traffic is 
processed with a limited use of processing and memory 
resources —ultimately in a short time— and a slow path that 
is invoked in a limited number of cases. In this respect, 
service-based classification aims at providing a solution to the 
fast-path processing by proposing that traffic be classified 
according to the service it belongs to. A service is identified 
by a serviceID, which is the tuple {server IP address, 
transport-level port, protocol}. Experimental data confirm 
that services are very stable even over long periods, making 
this method extremely simple, efficient and robust. 
Particularly, robustness is achieved because this method does 
not require the analysis of all sessions: provided that a service 
has been previously recognized, sessions accessing it can be 
classified even if encrypted at application-layer or data flow is 

 
8 The total number of packets is the sum of packet classified by the service 

table (about 85%), the unknown traffic (about 9%), and the ones that are 
related to the TCP initial handshake plus the first packet(s) of the sessions that 
are classified according to the payload-based method. Once the session is 
classified by the payload-based module, following packets are included in the 
amount of traffic classified by the service table. 
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observed only in one direction. Results in terms of efficiency 
are impressive, leading to a 37x reduction in processing cost, 
and a 20x reduction in the number of entries in data structures 
compared to session based classifiers at least in the traffic 
trace examined; furthermore each entry being half the size. 
Real-time measurements on the actual traffic transmitted on 
the upstream link of our University show that roughly 81% of 
the packets and 93% of the traffic (in terms of bytes) is 
successfully classified with the proposed method. 
Furthermore, service based classification is among the few 
methods that guarantee early classification, including the 
initial TCP handshake of a session. Among the few drawbacks 
of this method is the impossibility to classify IPsec traffic. It is 
worthy noticing that the precision of the service identification 
process is crucial for obtaining high-quality results, since a 
mismatch in service identification will impair the 
classification of all the sessions related to that service. 
Thanks to its fast-path approach, service-based classification 
provides a way of making the deployment of sophisticated 
methods for service identification, such as statistical or 
behavioral algorithms, or even a combination of them with 
payload-based classification, practical notwithstanding their 
high complexity and processing requirements. In fact, by 
using such solutions to discover network services and hence 
populate the service table, i.e., only on the slow path, their 
complex algorithms are executed only on a limited number of 
packets. From a certain point of view, the efficiency of the 
service-based approach frees computation and memory 
resources that can be used to identify more precisely the 
services. Finally, it is also possible to adopt a service database 
built offline, possibly provided by a third party and modeled 
after the signature database of antivirus programs. 
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