
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1


Abstract—This paper presents a novel approach in traffic

classification that is based on the identification of the service that
generates the traffic. This method is, in some sense, orthogonal to
current approaches and it can be used as an efficient complement
to existing methods to reduce computation and memory
requirements. Experimental results on real traffic confirm that
this method is extremely effective and may improve considerably
the accuracy of traffic classification, while it is suitable to a large
number of applications.

Index Terms—About four key words or phrases in
alphabetical order, separated by commas. For a list of suggested
keywords, send a blank e-mail to keywords@ieee.org or visit
http://www.ieee.org/organizations/pubs/ani_prod/keywrd98.txt

I. INTRODUCTION

raffic classification is one of the hottest topics in
computer networks. On the one side, network managers

want to know precisely the type of traffic transmitted over
their networks to enforce various polices such as for quality of
service (QoS), security, management, and more. On the other
side, an increasing number of applications tend to hide their
behavior (through encryption, tunneling, etc.) trying to avoid
limitations imposed by such policies.

Traditionally, traffic classification relies on the port based
method, which exploits transport layer information (source
and destination TCP/UDP ports). However, this method has
many limitations that make it quite imprecise and inefficient
despite its extensive usage. Not all servers respect well-known
ports conventions, malicious software can use well-known
ports in order to let its traffic pass through port-based security
restrictions, many peer-to-peer applications actively try to
avoid classification using random ports, network tunnels can

Manuscript received October 9, 2001. (Write the date on which you
submitted your paper for review.) This work was supported in part by the U.S.
Department of Commerce under Grant BS123456 (sponsor and financial
support acknowledgment goes here). Paper titles should be written in
uppercase and lowercase letters, not all uppercase. Avoid writing long
formulas with subscripts in the title; short formulas that identify the elements
are fine (e.g., "Nd–Fe–B"). Do not write “(Invited)” in the title. Full names of
authors are preferred in the author field, but are not required. Put a space
between authors’ initials.

F. A. Author is with the National Institute of Standards and Technology,
Boulder, CO 80305 USA (corresponding author to provide phone: 303-555-
5555; fax: 303-555-5555; e-mail: author@ boulder.nist.gov).

S. B. Author, Jr., was with Rice University, Houston, TX 77005 USA. He
is now with the Department of Physics, Colorado State University, Fort
Collins, CO 80523 USA (e-mail: author@lamar.colostate.edu).

T. C. Author is with the Electrical Engineering Department, University of
Colorado, Boulder, CO 80309 USA, on leave from the National Research
Institute for Metals, Tsukuba, Japan (e-mail: author@nrim.go.jp).

be instantiated using well known ports in order to avoid
imposed traffic restrictions, IP payload encryption hides the
port numbers.

An evolution of this approach relies on payload-based
inspection that is used in most commercial devices and is
declined in different flavors [4]. This technique shares some
of the problems of port-based classification (encrypted
protocols, tunneling) and is perceived as really expensive
from the computational point of view. Other classification
techniques that aim at identifying applications based on their
behavior as inferred from observed traffic (statistic traffic
analysis or heuristic analysis) are being studied, but are far
from being ready for commercial deployment.

This paper presents a new classification technique that, in
some respect, is orthogonal to the abovementioned
mechanisms. Our approach, called service-based
classification, exploits information about services previously
discovered in the network in order to classify traffic flows.
Main advantages of this method are robustness, accuracy, a
limited use of processing power, reduced memory
requirements, and the capability to use any classifier in the
early stage of the classification (namely, the service
identification phase).

This paper is organized as follows. Section II surveys the
most common classification methods available in the
literature. Section III describes the service-based classification
idea, while some details about our implementation are given
in Section IV. Section V presents an evaluation of this
technique and conclusive remarks are presented in Section VI.

II. RELATED WORK

Currently deployed network classification algorithms
generally fall in one of two categories: payload based
algorithms and behavioral algorithms. This section provides a
brief overview of the state of the art in network traffic
classification focusing on some of the most relevant
algorithms in each category.

Payload-based classification is applied by most commercial
solutions for various purposes ranging from statistics to
security, because it provides the best trade-off between the
classification accuracy and the coverage in terms of number of
recognizable protocols. A possibly deep inspection of data
transported within packets is used to identify the flow packets
belonging to and the application generating it. In fact, by
inspecting the headers of the higher layer protocols, possibly
up to the application layer payload, it is possible to precisely
identify the protocol being used by the application and

Service-Based Traffic Classification

M. Baldi, N. Cascarano, F. Risso, Member, IEEE

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

possibly gather information on the type of traffic it generates.
However, the correct identification of a protocol is not
straightforward. One approach relies on searching for patterns
or regular expressions that can uniquely identify each
protocol; a database containing the description of each
protocol is needed. Many payload based solutions have been
proposed [2] [3], some coupled with an approach for
describing network protocols in order to make classification
code easy to reuse and update [5][6]: classification of
additional protocols or new versions of existing protocols can
be achieved by simply adding their description, without the
necessity of any modification to the classification software
itself.

Known problems of payload based classification algorithms
are (i) high sensitivity to packet loss and TCP/IP
fragmentation and segmentation issues, (ii) hard and time-
consuming task of creating protocol signatures, that are
crucial to the effectiveness of the solution, (iii) encryption
and/or tunneling that hinders access to data contained into
application layer headers and payloads, and (iv) significant
requirements in terms of computational and memory resources
that actually make traffic classification at high line rates
difficult.

Due to the high computational requirements of deep packet
inspection, payload based classification algorithms usually
limit pattern searching to the initial packets of each flow.
According to this method, named Packet Based – Flow State
in [4], once the protocol transported by a flow has been
recognized, the flow identifier (i.e., the 5-tuple including IP
addresses, ports, and transport layer protocol) and the
corresponding application-layer protocol are added to a data
structure in memory, often called session table, that is
maintained as long as the flow is active1. The main critic
moved toward these methods is about the memory usage for
maintaining flow state information; in case of large networks,
the size of such per-flow state grows significantly and this
might become an issue. Furthermore, additional memory is
required because pattern matching usually relies on regular
expressions, which are well-known for their memory
consumption due to the necessity of maintaining graph-based
structures representing Deterministic Finite Automata. On the
other side, also processing requirements may be problematic
due to regular expression matching and to session table
management (lookup, insertion, deletion, etc.). These
problems become even worse in the Message Based –
Protocol State flavor [4] of the payload-based method
(implemented in Binpac [6] and SML [7]), that needs to
rebuild the entire application-layer message to enable the
analysis of the entire data in order to achieve the precision
required for security appliances. In this case, the amount of
information to be maintained grows even more, as do
processing requirements for session reconstruction and

1 While the session table is usually associated to payload-based techniques,

in fact it has a broader usage. Particularly, all methods that rely on session
identification (no matter how this identification is done) need to maintain this
information in memory.

application-layer processing, although some smart method can
be devised in order to decrease this complexity [18]. It is
important to notice that [4] demonstrates that the simpler
Packet Based – Flow State approach is in most practical cases
sufficient for the vast majority of applications.

Another approach in traffic classification relies on
behavioral techniques, whose main assumption is that each
application is characterized by some specific behavior.
Applications can then be identified by just gathering
information at different levels (e.g., packet inter-arrival time,
jitter, packet size, etc.) and analyzing it (e.g., from a statistical
point of view), often without inspecting protocol headers and
application data transported. Therefore behavioral algorithms
are not affected by any of the shortcomings of payload based
algorithms related to information hiding (e.g., by encryption)
or camouflage (e.g., by using ports typically deployed by
specific services). Specifically, behavioral algorithms work
the same way independently of whether flows use encrypted
payloads or not. Unfortunately, behavioral algorithms have
some common limitations; first of all, most of them typically
require a pre-classified traffic trace in order to train the
classifier before it can start working. These pre-classified
traces are usually classified using payload-based methods,
manual inspections and human experience; although there are
few guaranties about the actual precision of these pre-
classified traces, all measurements are done starting from an
imprecise base. Furthermore, a wide class of behavioral
methods needs to be trained in exactly the same conditions of
the environment where they are going to be deployed, which
often prevents the training sets obtained in one site from being
usable as a trainer set in other places. Additional problems are
related to the limited temporal validity of the training set due
to network reconfiguration and long term variations, and to
the fact that these algorithms often need to observe a fairly
large number of packets before they can work properly.

Behavioral algorithms can be further organized into three
sub-categories. Machine learning algorithms [9] [10] [11]
[12] [13] deploy advanced analysis techniques, such as
clustering algorithms, to divide network flows in different
classes based on information devised without inspecting
application layer payload. Statistical algorithms [14] process
statistical properties of network flows through mathematical
function, like Bayesian filters, in order to derive a statistical
“fingerprint” for each application. Typical data analyzed by
these algorithms are round-trip-time, inter-arrival time, inter-
arrival jitter, mean packet size. Heuristic algorithms evaluate
how each host act within the network in order to identify the
applications that hosts are running. Some examples of data
analyzed by these algorithms are the order of
requests/responses produced by a host, number of hosts
contacted, number of ports deployed.

Among heuristic algorithms, BLINC proposed by Faloutsos
et al. [8] introduces the idea of looking at the “social”
behavior of each host. In fact, the type of traffic a host is
producing is devised from the observation of network and
transport layer behavior such as how many hosts it contacts or

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

it is contacted by, how many ports it uses for accepting and
producing traffic. The behavioral analysis is carried at social,
functional and application level, and contributes to create the
so called graphlets graphically describing the behavior of a
host. Particularly, graphlets show the number of distinct
source and destination ports used, and the number of hosts
contacted; the basic assumption is that each application is
characterized by a certain type of graphlets. All information
needed to create graphlets can be devised from the transport
and network layers, thus avoiding application layer payload
inspection and its shortcomings and limitations. A classifier
that applies this algorithm is first trained by analyzing pre-
classified traffic traces to devise application-specific
graphlets. Then, new flows can be classified by comparing the
corresponding graphlets with the ones obtained from the pre-
classified traces. Early classification is obviously not possible
with this method because a certain number of interactions
must be observed in order to understand which graphlet best
represents the behavior of a host. Results look promising, but
the solution still suffers from some limitations. Graphlet
identification is quite difficult and actually done with human
support by observing various types of traffic in order to
identify common behaviors within the same kind of
application. Moreover, it is difficult to add a new graphlet and
making sure it does not overlap with others. Some abnormal
behaviors could be classified only by interlacing multiple
graphlet and this is not supported by the current solution.
NATs are a big problem for this method because they are seen
as hosts that summarize the behaviors of all the hosts behind
them. Also protocol coverage has drawbacks, since often only
the protocol family (e.g. peer-to-peer) can be identified
precisely, instead of the actual protocol. Finally, the precision
of this method is still lower than the precision offered by
methods that use payload inspection for classifying traffic.
Summarizing, the idea is interesting, but it is complicated by
practical issues involved in handling graphlets.

The idea introduced by Faloutsos et al. that an application
has a distinguishable behavior is one of the inspiring
principles of service-based classification. However, while
BLINC uses specific social behaviors characterizing an
application in order to classify the packets of a flow as
belonging to that application, the solution proposed in this
work relies on the fact that most applications display the
specific behavior of offering a service at fixed “network
coordinates”, i.e., at a specific port on a specific host.
Consequently, once the application providing a certain service
is identified, the packets of a flow directed to its “network
coordinates” can be classified as belonging to that application.
Hence, although the two approaches have a common inspiring
idea, the resulting solutions are very different.

An idea similar to our proposal of service classification was
already used in previous works, namely [16] and [16], but
with some noteworthy differences. [16] proposes to
subsequently apply several classification techniques with
growing computational complexity, until a flow is classified
and to keep a history of already classified flows to build a

knowledge base for particular host/port combinations that can
be used to validate future classification results by checking
their conformance with roles previously observed for the same
host. In essence, the historical data collected by the solution
presented in [16] are not used to classify new flows, but can
be used to validate the classification outcome of the chain of
adopted classification techniques. A similar approach can be
found in [16], which proposes a statistical method to classify
peer-to-peer traffic; among the three techniques jointly
deployed, one consists in keeping a table that contains IP
addresses of hosts that are at some point identified as nodes of
a peer-to-peer overlay, or that are identified as known
(traditional) services (e.g., HTTP server). All flows whose
packets contain an IP address included in the P2P table are
flagged as “possible P2P” and analyzed in more detail. The
main idea is that the type of service a host is currently running
can be inferred by looking at the host history (i.e. the sessions
generated by the host and the number and type of services
contacted in the past). Hence, this approach uses the host
history to classify new services, while our proposal relies on
other classification algorithms for the initial classification,
being the service-based classifier used only in the following
classification of that service.

In conclusion, while payload-based methods are usually
precise enough and offer excellent coverage (in terms of
protocols detected), they are expensive from the memory and
computational points of view. Other approaches are
promising, but usually limited in terms of coverage, and often
suffering from many limitations due to their training
requirements. Other methods based on host history are in
some sense similar to our work, but they failed to fully
understand and exploit the power of service-based
identification. The service-based approach presented in this
paper is a breakthrough technology that includes as many
advantages as possible from both categories while reducing
disadvantages. Specifically, the objective is to obtain the high
classification precision of payload based methods, while
avoiding their limitations related to segmented signatures,
encrypted payload, and memory requirements.

III. SERVICE-BASED CLASSIFICATION

Service-based classification is a surprisingly simple idea
that relies on the observation of how hosts usually interact and
on the assumption that certain hosts, usually called servers,
perform similar interactions, usually offering a service, with
multiple other hosts over a certain time span. This assumption,
which provides the foundation of our method, will be verified
through experiments on real network data in Section V.B.

According to the classic client-server paradigm, a
potentially large number of hosts connect to a single one to
obtain a service. In this situation it is easy to identify the
server as a main actor with a long lasting role as it usually
offers the same service at the same “network coordinates” (IP
address and TCP/UDP port) for a long time. The basic
assumption in service-based classification is that knowing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

which service is offered at an IP address/port pair, a classifier
can infer that all sessions directed toward that pair will access
such service. For example, if the classifier knows that host
www.polito.it is running a web server on TCP port 80, it
can classify all sessions established to this IP address/port pair
as HTTP traffic. It is important to notice that such a classifier
does not work like a port based classifier. While the latter
assumes that a session is transporting HTTP because it is
connected to TCP port 80, a service-based classifier knows
that www.polito.it is running a web server on TCP port
80. When the classifier discovers a service, it stores the triple
identifying it — i.e., IP address (of the server), TCP/UDP port
(at the server), and transport protocol in an appropriate
structure in memory called Service Table.

The same principle can be applied to hosts running peer-to-
peer applications. In this case the application has a client part
and a server part running simultaneously: the client part of a
peer establishes sessions to the server part of other peers
awaiting for connections at a specific port. How this port is
assigned and communicated to the other peers depends on the
specific application and protocol, but the key point is that the
port used to receive connections from other peers usually does
not vary very frequently and is reused many times for the
same instance of the peer-to-peer application. So when the
client part of a peer connects to the server part of another peer
to transfer information, the service-based classifier identifies
the server part of such session as a service and stores the
associated triple in the service table. Also peer-to-peer
applications that use the same port for both the server part and
the client part, such as Skype for example, are handled
properly. After a peer A has received a connection to its server
part, a triple containing its IP address and port is created in the
service table as a service. When its client part connects to
another peer B, the service-based classifier classifies the
corresponding packets according to either A’s service entry or
B’s service entry. Although classification based on A’s
service entry is in principle mistaken as packets are being
exchanged as part of a session whose server side is B, the
packets are anyway correctly classified as belonging to the
peer-to-peer application at hand. When an application shows
such behavior (which is not uncommon among P2P software)
our approach can be extended by adding also the client-side of
a session to the service table, which will become the server
part in a later data exchange, for all traffic belonging to that
application.

It is important to notice that finding out which service is
running at a certain IP address/port pair (i.e., service
identification) is orthogonal to the service-based approach: in
principle, any method can be used to perform service
identification (payload-based, heuristic, or even manual
inspection, and more). The service-based approach assumes to
know precisely the service associated to an IP address-port
couple and from that point on it will guarantee a precise
identification of that traffic. Obviously, service identification
is not straightforward and its effectiveness has an impact on
the outcome of service based classification, as discussed later.

Service-based classification features interesting advantages
over other classification methods. Encrypted traffic at
application layer can be properly classified provided that the
corresponding service has been previously identified, i.e., it
has an entry in the service table. It offers pattern segmentation
transparency, i.e., a flow can be properly classified even
though protocol identifying patterns are split across multiple
packets, avoiding the complexity of reassembling application
data units. A service-based classifier needs to maintain only
information about services (i.e., IP address, port, transport
protocol and service offered) independently of the number of
traffic flows actually using such services; hence it has limited
memory requirements. The limited amount of state
information kept by a service-based classifier impacts (i)
scalability, performance in terms of (ii) lookup time and (iii)
hardware implementations that can rely on faster on-chip
memory. Classification of a packet belonging to a known
service requires a single lookup on three fields (IP address,
port and transport protocol) in a relatively small lookup table,
therefore with low computational cost. Moreover, service
identification, which might have higher computational cost, is
expected to be performed only on a small fraction of the
packets and it can be even performed offline; in any case,
service identification is orthogonal to the service-based
method. Finally, as we said, service-based classification is
among the few methods that guarantees early classification,
i.e. being able to classify even the first packet (e.g., a TCP
SYN) within each session, while other methods need to
process at least the first few packets within each session.

Service-based classification also has some potentially
critical issues. Its effectiveness, in terms of minimizing both
misses and wrong matches, and also its performance heavily
depends on identification of network services that must be as
accurate as possible. A wrong entry in the service table leads
to wrongly classifying a potentially large number of flows,
while a missing entry possibly leads to both a failing
classification of a large number of flows and deploying
significant amount of computational resources in an effort to
identify the service being used, e.g., by deeply inspecting the
corresponding packets. Consequently, a successful service-
based classification is tightly coupled to a robust and effective
service identification solution, which, as we said, is
orthogonal to service-based classification.

In addition, not keeping information about individual
sessions, service-based classification is not suitable for
applications that require such granularity level, such as, for
example, per-session enforcement of QoS policies. A service-
based classifier can be customized for such applications to
keep an additional session table for those services requiring
so, which is a simple extension that can be added to any
implementation.

Other potential issues include dynamic sessions and
proxies. With respect to the first problem, some applications
(e.g. FTP, SIP) use a control session to negotiate the port of
the data transfer, resulting in a data-transfer session that
cannot be associated to a stable service based on its ports. In

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

order to classify these sessions, a deeper inspection of packets
belonging to the control session is required since data transfer
is usually made of raw data, making problematic the
classification through a common traffic pattern. In order to
cope with these sessions, the implementation of a service-
based classifier must be able to inspect control packets
belonging to these well-known applications, as several
modern network devices (Firewall, NAT, etc.) do.

The second problem is related to proxies (and SOCKS
servers), which handle the access to various types of services
(HTTP, FTP, etc.) on behalf of different clients using the
same transport-layer port. The service-based classifier has no
problem in classifying traffic from these servers to the target
service, but it is unable to distinguish the service contacted
when analyzing the traffic between clients and the
proxy/SOCKS server, which can be done only by application
data inspection. Like for services that use dynamic sessions,
the service-based method can be integrated with a callback
function that performs deep inspection on packets exchanged
between clients and their proxy and socks servers in order to
identify each flow accessing a specific service.

Finally, the service-based classifier is not effective with
traffic encrypted at IP level, e.g. with IPsec.

IV. IMPLEMENTING A SERVICE-BASED CLASSIFIER

Although the service-based classifier looks simple and
elegant, some issues need to be addressed to make it working
properly. This section presents such issues and gives some
insight in how they have been addressed in our
implementation. Given the generality of the service-based
method, other implementation strategies can be adopted.

A. Service identification

Given the expertise and previous work of the authors, a
payload-based implementation of a service identification
module has been an obvious choice. In particular, an existing
packet processing engine based on the Network Packet
Description Language (NetPDL) [1] [5] has been reused in the
implementation of the service identification module. NetPDL
is an application-independent packet format description
language that enables the creation of a generic protocol
description database: the NetPDL database, in fact. Although
it includes only packet header formats and does not support
the description of protocol temporal behavior (e.g., a protocol
state machine), it has proved being extremely effective and
robust with respect to traffic classification [4], thanks to an
extension that enables management of lookup tables,
originally used to maintain transport-level sessions [5]. The
high flexibility of NetPDL makes the engine suitable for the
implementation of the service-based classifier as well, in
addition to the payload-based service identification module.

The main modification made to the NetPDL engine is the
addition of some new tables, such as the service table that
contains information about services. The process starts with
an empty service table, while traffic is processed by extracting
IP addresses and ports from each arriving packet. Since the

server side of the communication cannot be inferred on a
packet-basis, the service table is looked up twice: once with
the source identification (source IP/port) and once with the
destination identification. If one of these lookups is
successful, the packet is classified through the service-based
method. Otherwise, as depicted in Figure 1, the service
identification module performs a payload-based classification
to possibly introduce a new entry in the service table
containing the IP address and the transport layer port used by
the server side of the session and the application protocol
associated. Any new packet toward this “known service” can
subsequently be classified directly through the information
kept in the service table as described above without any
further processing (e.g., payload inspection). Please note that
the identification of the server side of the connection is not
straightforward and will be discussed in Section IV.B. As time
passes, more and more traffic will be classified by the service-
based method since the service table will include an increasing
number, possibly most, of the services active in the network.

GET /logo.gif HTTP/1.1
Host: www.polito.it
User-Agent: Mozilla/5.0
...

HTTP/1.1 200 OK
Pragma: no-cache
...

Client A

Client B

Server

Known services table

130.192.73.1:80 = http

1. A session is established 2. Service is identified through
payload inspection

3. Service is added to the
Known Services Table

4. Next sessions are classified
with service table

Session from 130.193.190.3:2245 (client) to 130.192.73.1:80 (server)

Ses
sio

n
fro

m
 8

4.
21

.5
0.

6:
33

00
0

(c
lie

nt
) t

o

13
0.

19
2.

73
.1

:8
0

(se
rv

er
)

Figure 1. Service identification.

B. Distinguishing clients and servers

The server side of a TCP session can be easily identified by
observing the SYN and ACK flags during in the three-way
handshake of the TCP protocol. In our implementation we use
an additional lookup table, called Candidate Service Table, in
which a new entry is added with the IP address and port of a
host that accepted an unclassified TCP session by generating a
TCP packet with both the SYN and ACK flag enabled. The
Candidate Service Table is required to keep track of the server
side of a session because the service is possibly identified,
e.g., through payload inspection, once the session has been
opened, i.e., when the SYN/ACK flags, used only during the
initial handshake phase, are not available to enable the
identification of the server side. When the service is finally
identified, the server information is moved from the candidate
service table the service table.

Entries of the Candidate Service Table are subject to a very
fast ageing (about ten seconds [19]) in order to avoid their
number to explode over time due to sessions opened by
unidentified services, unsuccessful handshakes, or unused
opened sessions, as in cases of malicious activity such as SYN
flooding and port scanning.

With UDP services identifying the server is different since

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

explicit information like the SYN flag in the TCP case is not
available. Although, especially with the growing adoption of
broadband multimedia applications, UDP is expected to
significantly increase its traffic share, possibly becoming
predominant, this paper focuses on TCP traffic, which as of
today accounts for the vast majority of data. UDP traffic
classification, that requires a non-straightforward extension of
what is proposed in this work, is left to a companion future
paper.

C. Managing the service table

Besides properly populating the service table, an important
issue is the prompt elimination of service entries once the
corresponding service is no longer provided. This is important
in order to avoid the explosion of the number of service
entries and that a service offered only temporarily leads to
classification errors. One possible approach is to purge an
entry that does not make a hit for a certain amount of time,
hereafter referred to as service inactivity timeout. As a further
refinement, the service inactivity timeout can be differentiated
for different service classes. For example, some services are
offered over a long time period, possibly permanently, even
with a low connection rate, and their entries are given a long
service inactivity timeout. A typical example of this service
class is an SMTP server contacted only few times in a day, but
providing its service over a very long time period. Vice versa,
other services have a naturally short life and the inactivity
timeout associated to their entry may be shorter. Typical
examples are peer-to-peer applications.

Assigning distinct service inactivity timeouts to different
classes of services, although not strictly necessary, is useful in
avoiding multiple re-identification of long-term services, e.g.,
through costly deep packet inspection. On the other hand,
assigning an entry to the long-term service category is critical
because if the service is not actually long-term or it has been
wrongly identified, the entry can lead to persisting
classification errors. Consequently, there should be a certain
level of certainty about service before categorizing it as a
long-term one. One possible policy is to set any newly
identified service “under observation”: its entry is categorized
as short-term and some additional checks are performed on
packets classified according to the entry. For example,
payload inspection can be executed on randomly chosen new
sessions. After a certain period of observation confirming the
initial identification, hence the long-term nature of the service,
the corresponding entry can be categorized as long-term.
Another policy can be to categorize services as long-term only
through explicit (e.g., manual) configuration.

With respect to the scalability of service based
classification, it is worth noticing that the management of the
service table is independent of the classification process and

can be implemented as a distinct process running separately
from the core classification process.

V. EXPERIMENTAL EVALUATION

This Section provides an experimental evaluation of
service-based classification, including some problems that
arise in its implementation. The next section first devises the
benefits expected by the deployment of service-based
classification from an analysis of network traffic itself — i.e.,
not based on the results of particular classification
experiments — which provides a more general assessment of
the potential of service based classification. Then, the results
of specific classification experiments are reported to
substantiate such general assessment.

A. General Assessment

Before implementing our service-based classifier we
collected a set of session-related statistics on the link that
connects our University to the Internet to assess the potential
benefits of service-based classification in terms of memory
occupancy, i.e., if the number of services was really smaller
than the number of sessions. These measurements, done using
Tstat [15] and lasting several days, wanted to determine the
maximum number of service entries required to classify all the
traffic with a service-based approach, compared to the number
of session entries required by a classifier based on session
identification. The obtained results must be intended as a
lower bound of the session/service table size since they
account for the session/services present and actually active at
any given time. A TCP session is considered closed when a
FIN or RST packet is observed; in case of abnormal
termination, a 10-minutes session inactivity timeout is used to
declare a session terminated, as suggested in [22] and 0.
Analogously, services are considered closed if no traffic is
observed in an idle period of the same duration.

Figure 2 shows, for each minute, the number of active
traffic sessions and the corresponding number of services on
the uplink (100 Mbps) of our university network (about 6,000
hosts) over a 7-day period. The average number of active
traffic sessions is 80,000 with peaks of 180,000, while the
total number of services never exceeds 10,000. Figure 3
shows the same figures for a traffic trace2 from the MAWI
wide traffic archive [21]. The average number of active
session is 120,000 with a peak of 380,000, while the total
number of services never exceeds 10,000. The average on the
whole observation period of the session to service ratio is
about 20 for both traces, which means that a service table
requires roughly 20 times fewer entries than a session table.
Furthermore, a service entry is smaller than a session entry,
thanks to the smaller number of information that has to be
stored. This is beneficial in terms of memory requirements as
well as both processing requirements and performance for
session/service information look-up.

Although these numbers show clearly the advantage of the
service-based classification (at least in the tested

2 This trace was captured on March 19th, 2008 on the sample-point F, a

150Mbps trans-pacific backbone link.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

environments3), they are derived under the assumption that
services are stable over time. This assumption will be
empirically demonstrated in Section B.

0

40000

80000

120000

160000

200000

0 50 100 150

Time (hours)

Services

Sessions

Figure 2. Services vs. sessions on the University Torino network.

0

50000

100000

150000

200000

250000

300000

350000

400000

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Daytime hour

Sessions

Services

Figure 3. Services vs. sessions on a trans-pacific link.

a) Experimental setup

The service-based classifier implementation described in
Section IV has been tested in different experiments; the results
obtained with two of them (more details on these experiments
are shown in Table 1) are presented in this paper. The first
experiment contains three days of traffic related to a single
subnet of our University during a week-end (hereafter called
Weekend trace). The second one is a twelve hours analysis of
the traffic on the whole campus network during a working
day, hereafter referred to as WorkingDay trace. The Weekend
trace is particularly challenging from the classification point
of view because it contains mainly eDonkey peer-to-peer
traffic that is known to be difficult to classify; WorkingDay,
instead, includes mainly HTTP traffic. Although our traces
contain all kinds of traffic, as previously discussed, this work
focused on TCP sessions only. Traffic was processed on an
Intel Dual Xeon (2,4GHz, 512KB cache, 1GB RAM, 4 disks
for an aggregated space of 900GB) equipped by an Endace
DAG card for packet capture, ensuring that no packets were

3 The gain guaranteed by the service-based method may be more limited in
case of different network conditions. We may speculate that the session vs
services ratio may be smaller in case of a network with large percentage of
P2P traffic (e.g. an ISP POP). However the authors are not aware of any
publicly available (and recent) trace to verify this speculation.

dropped during the capture process. Traces were analyzed
with both a payload-based classifier based on the NetPDL
described in Section IV.A and a service-based classifier that
uses the same payload-based classifier for service
identification as described in Section IV. The comparison of
the results obtained with the two classifiers shows benefits in
terms of both memory usage and classification precision when
service-based classification is combined with an existing
classifier. Given that our service-based classifier
implementation is not optimized for performance, it cannot be
meaningfully deployed for an assessment of classification
rate, which in any case strongly depends also on the
underlying hardware. Such important assessment is left for
future work.

TABLE 1. SUMMARY OF THE TRACES USED IN OUR ANALYSIS

Trace Description

Weekend 65 hours trace (from 11/05/2007 – 2.00 pm to
14/05/2007 – 7.00am), 89 hosts in the internal network,
66M packets (69% TCP), 35 GB traffic (86% TCP)

WorkingDay 12 hours trace (from 11.00am to 11.000pm on
20/12/2007), 5649 hosts in the internal network, 583M
packets (88% TCP), 465 GB traffic (95% TCP)

B. Service stability
As mentioned in Section III, the fundamental assumption of

the service-based classifier is the stability of services. In fact,
a service-based classifier can misclassify packets when either
(i) a service has not been properly identified or (ii) a new
service is offered at the same “network coordinates” where
another service was previously offered. The last phenomenon
is related to service stability. Given that (i) is a shortcoming of
the classifier used for service identification and is orthogonal
to the service-based classifier itself, service stability is the key
factor impacting the accuracy of service-based classification.

In order to prove this assumption, we used a tool jointly
developed at University of Brescia and Politecnico di Torino,
which installs a probe in each host and logs on a centralized
server the name of the application that created each network
socket on the host on which it is running. By deploying it on
all the hosts of a network used for the evaluation of a
classifier, it is possible to precisely know which application
generated each session. The tool has been installed on 11
hosts (with Linux, Windows and MacOS-X operating
systems, running several applications; among the other Skype,
Emule, Joost, uTorrent), the traffic produced has been
captured for 4 days and the traffic traces have been analyzed
by a payload-based classifier.

TABLE 2. APPLICATION MONITORING VS. SERVICE-BASED CLASSIFICATION

Observed sessions 40503

Observed services 21675

Observed applications 81

Services in which sessions are classified
univocally as belonging to the same

21042

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

application

Services in which sessions are classified
univocally as belonging to the same
application or as “unknown” traffic

633

Services in which sessions are classified
as belonging to different applications by the
payload-based classifier (or by manual
inspection)

0

Table 2 shows that the payload-based classifier identified

the vast majority of the sessions associated to a given service
as belonging to the same protocol. In a small minority of
cases, some sessions were unclassified, mostly due to
signature-related problems (e.g., a signature split across two
packets), while in a very limited amount of cases we found
different classification results associated to the same services.
In the latter case we further analyzed these sessions with a
manual inspection and we verified that these mismatches were
due to an error of the payload-based classifier. These results
verified that classification results produced by the payload-
based classifier are always coherent with the application that
created. The overall result was that we found no cases in
which sessions belonging to different protocols were referring
to the same service, which provides a strong (albeit
experimental) foundation to our method. In other words, since
all the services analyzed do not change during their service
time, it is possible to state that the classification error
introduced by a service change during its lifetime is, to say the
least, really rare.

C. Service activity and service inactivity timeout
Service lifespan must be taken into consideration in the

management of the service table, i.e., in the choice of the
service inactivity timeout. On the one hand, the larger the
number of services listed in the table (as it can be obtained
with a long service inactivity timeout), the larger the amount
of traffic possibly classified by the service-based classifier.
On the other hand, a long service inactivity timeout may lead
to a dramatic increase of the size of the service table, reducing
the scalability of service-based classification. Moreover,
keeping entries in the service table for a long time amplifies
the impact of service identification errors as each
misclassification (e.g., a pattern mismatch occurs when
identifying the protocol deployed by the service) potentially
impacts the classification of all packets sent and received at
the corresponding network coordinates (i.e., IP address/port
pair). It is worth mentioning that identification error
probability can be reduced by improving the deployed service
identification method, which is independent of service-based
classification. Also, multiple classifiers with different
properties (i.e., strengths and shortcomings) could be used in
parallel to provide service identification. These aspects,
although significant and relevant to the overall performance of
the classification process, are outside the scope of the current
work. Instead this Section aims at studying the activity level

of services to gain a better understanding on how to set the
service inactivity timeout.

Based on the authors’ experience in analyzing network
traces, service can be categorized in three classes with respect
to their activity level and lifespan, i.e., the overall time frame
during which they show some activity. One-shot services are
active for a very short time (a second or less), and are never
re-contacted. Other services, named intermittent services, are
active repeatedly very shortly each time; these services are
usually contacted by few hosts rarely and for short time
periods and their sessions are somewhat distributed along the
entire trace, i.e., they have a rather long lifespan. Continuous
services are characterized by rather long activity periods, are
usually contacted frequently, and are expected to generate
most of the traffic. Figure 4 provides a graphical
representation of the activity time of some representative
services; each horizontal line represents the time period when
the service is active. Classes with ID from 1 to 6 are
continuous services, with a long period of activity without
breaks. Services with ID from 7 to 12 are one-shot services
since their activity time is very short and they do not reappear.
The last group of services, with ID from 13 to 18, are
intermittent services.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

 0 2 4 6 8 10 12

S
e

rv
ic

e
 I

D

Hours

Activity time

Figure 4. Graphical representation of per-class service activity for trace
WorkingDay.

Intermittent services are the most critical with respect to

setting the service inactivity timeout. If their inactivity periods
are longer than the service inactivity timeout, they have to be
re-identified each time they become active again, thus
introducing overhead and reducing performance.

In order to characterize service duration and have precise
information about the lifespan of each service, we modified
the service based classifier in order to log the insertion and
deletion of services in the service table, which will provide
precise information about the lifespan of each service. Figure
5 shows a histogram of the lifespan of services in trace
WorkingDay highlighting the percentage of services that have
been identified when running a service-based classifier with
two different values of service inactivity timeout: 10 minutes

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

and 60 minutes4. Some bars are made up of a continuous
portion and a dashed portion: the dashed portion takes into
account of the services that have already been identified in the
past and that appeared again after the service inactivity
timeout. As shown in Figure 5, the vast majority of the
services belonging to the (30-120] seconds category (with
inactivity timeout of 10 minutes) lasted for some time, then
disappeared from the trace for more than 10 minutes, then
appeared again in the trace, although their total lifespan
(including their inactivity time) falls within this bin. In this
example, intermitted services belonging to the (30-120] bin
accounted for about 6% of the total amount of observed
services and are by far the vast majority of services belonging
to that bin. Our analysis confirms that overall 41% of services
have to be re-identified with a 10 minute service inactivity
timeout versus 31% with a 60 minute service inactivity
timeout. In summary, the 60 minute service inactivity timeout
provides little improvement as far as service re-identification
— mostly concentrated among services with lifespan between
30 and 120 minutes, as shown in Figure 5 — and a significant
percentage of services with a large lifespan (greater than 120
minutes) still requires re-identification. On the other hand, the
60 minute service inactivity timeout has a serious impact on
memory usage (as demonstrated in Section V.D), since many
services that will never have traffic again are retained in the
service table for a long time.

0%

5%

10%

15%

20%

25%

30%

<
 1

s

(0
-1

]

(1
-5

]

(5
-1

0]

(1
0-

30
]

(3
0-

12
0]

(1
20

-2
40

]

(2
40

-4
80

]

(4
80

-1
44

0]

Lifespan ranges (minutes)

Intermittent: t-out 10 min

Continuous: t-out 10 min

Intermittent : t-out 60 min

Continuous: t-out 60 min

Figure 5. Service lifespan distribution for trace WorkingDay

In order to limit the performance impairments caused by
intermittent services with long lifespan and rather short
activity periods, service table entries could be assigned to
different classes, each characterized by a specific service
inactivity timeout, as discussed in Section IV.C. Analysis over
longer periods of time and a wider range of network scenarios
would be required to further substantiate what has been

4 The sum of intermittent and stable services of each bin should not differ

irrespective of the inactivity timeout used. This would be true only if the
payload based classifier used to identify services is able to classify services
analyzing any session produced by them. Unfortunately this is not true,
especially for services that produce encrypted sessions. Thus some services
are missing in some bins because the classifier was not able to classify them
when they reappeared after an idle period longer than the inactivity timeout.

presented here and provide an insight on long term service
change dynamics. However, the experiments reported in this
section demonstrate the importance of the service inactivity
timeout and their outcome can be used as a general guideline
for an algorithm to dynamically adjust the inactivity timeout
over time depending on the service type.

D. Ageing of service table entries

As shown in the previous section, the service inactivity
timeout associated to service table entries can impact the
performance of the classifier. We analyzed several traces with
a payload-based classifier and with a service-based one
configured with a service inactivity timeout of either 10
minutes or 60 minutes; Figure 6 shows the classification
results obtained on trace WorkingDay. No significant
differences can be observed in terms of classification results
with the two service inactivity timeout configurations: the
overall number of packets classified based on a service table
varies from 81% to 85%, which is a reasonably small
improvement. Furthermore, the variation in terms of
unclassified traffic is negligible, varying from 4.76% to 4.45%
(in terms of number of packets) when changing the value of
the service inactivity timeout5. This means that a 10 minute
aging time for service table entries is a good trade-off because
it to assures high performance and low memory requirements.
Moreover, it means that the payload-based classifier does its
job nicely and it is able to re-classify new sessions that do not
have a corresponding entry in the service table.

0%

10%

20%

30%

40%

50%

60%

70%

http unkown smtp bittorrent ssl ssh imap other

A
m

o
u

n
t

o
f

tr
af

fi
c

(%
 P

ac
ke

ts
)

Payload-based

Service-based (10 min timeout)

Service-based (1h timeout)

'

Figure 6. Classification results on trace WorkingDay.

An important observation is that simply increasing the
service inactivity timeout may not be a good idea, since we
may end up filling the service table with entries related to one-
shot services or services that are anyway not any longer
active, which will never appear again in the future. This is
evident in Figure 7 that shows an almost four-fold increase of
the service table size when changing the service inactivity
timeout from 10 to 60 minutes— without any appreciable
advantage in terms of classified traffic, as shown by Figure 6.
Therefore, a 10 minute service inactivity timeout has been
used in the experiments producing all the results presented in

5 The increase in the amount of classified traffic when using larger timeout

will be explained in Section V.E.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

the rest of the paper.

0

5000

10000

15000

20000

25000

0 2 4 6 8 10 12

Time (h)

T
ab

le
 e

n
tr

ie
s

Service table (10 min timeout)

Service table (1h timeout)

Figure 7. Service table size with different service inactivity timeouts on trace
WorkingDay.

It is worth noticing that the vast majority of the traffic is
generated by a fraction of all services. It may be an interesting
idea to keep only such services in the service table, which
enables to classify most of the traffic. Figure 8 shows the
cumulative quantity of traffic generated by each service in
both the WorkingDay and Weekend trace, where services have
been sorted from in order of decreasing amount of generated
traffic. We can see that, assumed equal to 1 the amount of
traffic that we are able to classify with the service-based
method (using a 10-minutes timeout and a payload-based
classifier for detecting the service once it appears), we are
able to classify 90% of that traffic with only 3.8% of the
number of services present in the entire WorkingDay trace
(3344 out of 87815), and 2.7% in case of the Weekend trace
(338 out of 12714). These numbers can also bring to the
conclusion that, once identified the most important service
contributors within the network, these services alone enable
the classification of the vast majority of the traffic. Obviously,
this has a major impact also on scalability, which is greatly
improved by limiting the service table to only the most
verbose services. While these numbers are somewhat expected
(for instance, the splitting of traffic sessions among mice and
elephants is well known in the literature [20]), in our case this
represents an even more important gain. For instance, sessions
terminate after a relatively limited time, while services may
stay stable for month or years (e.g., the Google website),
hence the service table can even contain entries that must be
verified only occasionally.

0%

20%

40%

60%

80%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

% of Services

%
 o

f T
ra

ffi
c

P
ro

d
u

ce
d

Weekend

Working day

Figure 8. Cumulative classified traffic; services are ordered starting from the
one that generates the most part of the traffic.

E. Accuracy

Our tests show that service-based classification offers an
improvement in classification accuracy over results obtained
with the original payload-based classifier. For example, trace
Weekend contains a significant amount of traffic generated by
eDonkey that hinders payload-based classification when
application-layer data is encrypted. The payload-based
classifier recognized only a small percentage of the flows
generated by these applications, e.g., some sessions that are
occasionally sent in clear and that represent special cases. For
example, Skype sometimes produces packets that are only
partially encrypted and consequently can be properly
inspected and classified; similarly, not all eDonkey messages
are encrypted. In all the other cases, the payload-based
classifier is unable to identify the protocol transported and it
marks flows as unknown, as it is shown by the high
percentage of unknown traffic in Figure 9. Experimental
evaluation also showed another problem related to the
completeness of the pattern database used by the payload-
based method. In fact, some unknown traffic is related to
flows that use particularly rare or undocumented application
level messages that are not part of the pattern database of the
payload-based classifier. Service-based classification does not
have this problem, because once a service has been identified
thanks to the presence of some known signatures in
application-level messages, following sessions are classified
based on the network coordinates they are related to. This is
confirmed by Figure 9 where the service-based classification
leaves a much smaller amount of traffic as unknown, while
classifies as eDonkey a much larger percentage of traffic than
payload-based classification. Results reported in Figure 9 are
referred to the percentage of packet classified; results are
slightly worse in terms of bytes, in which the percentage of
the unknown traffic is 11%.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

0%

10%

20%

30%

40%

50%

60%

unknown edonk http ssl rdp bittorrent ssh others

Payload-based

Service-based

Figure 9. Classification results of the Weekend trace with payload-based and
Service-based method.

Payload based classification on trace WorkingDay results in
a low percentage of unknown traffic because the trace
includes mainly HTTP traffic. However, service-based
classification results in improved accuracy also on the
WorkingDay trace. Figure 10 focuses only on the unclassified
traffic of Figure 9 and shows how this traffic has been
classified by the service-based classifier. For instance, among
the 54% of unclassified traffic of the Weekend trace, about
18% was eDonkey, 14% RPC (which is included in the
“others” bin in Figure 9), and more. Manual investigations on
a randomly chosen subset of classified flows confirm that the
outcome of the service-based classifier is correct.

0%

4%

8%

12%

16%

20%

edonk rpc http gnutella bittorrent ssl other

Weekend trace

WorkingDay trace

Figure 10. Improvement in classification accuracy; packets unclassifed by
payload-based classifier and succesfully classified by the service-based
classifier.

While the improvements in terms of unclassified traffic are
evident from previous graphs, a deeper analysis shows also
that a non-negligible portion of the traffic classified by the
payload-based classifier resulted wrong when re-classified
with the service-based method, mainly due to applications that
exploit tunneling techniques (e.g., Edonkey traffic
encapsulated in HTTP). Figure 11 shows the percentage of
packets that are classified differently by the payload-based
classifier and the service-based one. More specifically, for
each protocol X, positive values represent the percentage of
packets that the service-based classifier assigns to X given
that they were classified differently with the payload-based
method (ΔSBC((CSBC == X) | (CPBC != X))). Negative values

represent the amount of packets that were classified as
belonging to X by the payload-based classifier, and that
resulted no longer belonging to that protocol with the service-
based method (ΔSBC((CSBC != X) | (CPBC== X))). In other
words, being TSBC(X) the amount of traffic belonging to
protocol X as classified by the service-based classifier, and
TPBC(X) the amount of traffic classified by the payload-based
as belonging to protocol X, we have:

TSBC(X) = TPBC(X) + ΔSBC((CSBC == X) | (CPBC != X))

– ΔSBC((CSBC != X) | (CPBC== X)) (1)

A precise analysis of the results shown in Figure 11 is

problematic because, for sessions classified differently, we do
not know which method returns the correct result. A manual
inspection of some of these sessions (randomly chosen)
showed that the vast majority of them were correctly classified
by the service-based method; therefore we assume that the
results of the service-based classifier are correct in the
following discussion6. For trace Weekend, eDonkey sticks out
as the most problematic protocol as more than 2% of the total
amount of packets is not correctly classified by the original
classifier, while for trace WorkingDay, HTTP and Bittorrent
have the most significant values. Commenting these results is
rather difficult; we can take the HTTP traffic present in the
WorkingDay trace as an example. In this case, a deeper
inspection shows that most of the false negatives of the
payload-based classifier are due to the HTTP header split
across several packets (e.g., related to new interactive services
characterized by long URLs). In the meanwhile, false
positives are mainly due to Bittorrent that was misclassified as
HTTP due to its similarity in the application-layer header. The
fact that values in Figure 11 are relatively small (e.g.,
compared to the unclassified traffic analyzed in Figure 10)
shows that there are few disagreements between the two
classifiers, i.e., both classifiers make few classification errors.

-6%

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

edonk http rpc ssl ssh bittorrent other

C_sbc == X | C_pbc != X -- (Weekend trace)

C_sbc == X | C_pbc != X -- (WorkingDay trace)

C_sbc != X | C_pbc == X -- (Weekend trace)

C_sbc != X | C_pbc == X -- (WorkingDay trace)

Figure 11. Migration of classification result.

F. Scalability

Scalability must be assessed in terms of memory and
processing requirements.

6 If this assumption holds, the second term of Equation (1) represents the

false negatives of the payload-based classifier, while the third term represents
the false positives.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

From the memory standpoint, the number of entries
required by the service table is more than one order of
magnitude smaller than the number of entries required by the
session table, as shown in Figure 2 and Figure 3. Moreover,
each service entry is approximately half the size of each
session entry. This large improvement is not mitigated by the
necessity of some additional information such as the candidate
service table, whose size is negligible (Figure 12). In fact,
Figure 12 shows that the additional table required to keep
track of the potential services (as presented in Section IV.B) is
reasonably small (in average, one tenth of the service table),
hence has a negligible impact on the memory requirement of
the service-based classifier. Figure 12 shows also the number
of entries in the service table when processing the
WorkingDay trace. The average number of 5000 entries
during daytime hours fits well with theoretical lower bound
derived from Tstat analysis and shown in Figure 2 and Figure
3. This confirms the goodness of our implementation of the
service-based classifier.

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8 10 12

Time (h)

T
ab

le
 e

n
tr

ie
s

Service table

Candidate service table

Figure 12. Entries in the service and candidate service tables.

From the processing side, the computational complexity of
a classification solution is an important index of its scalability.
Profiling done on our classification code (written in C/C++)
confirmed that the cost for a lookup in the service table (i.e.
the main cost associated to each packet by the service-based
method) is 37 times lower than the cost for a pattern matching
on the payload (9700 clock ticks against 2607). Although the
asymptotic processing cost remains the same in both service-
based and payload-based classifier (in the unfortunate case in
which each service is associated to a single session), in
practical terms our method guarantees a speed-up of more
than an order of magnitude at best.

In summary, the performance and scalability improvements
of service-based classification over payload-based
classification is directly proportional to the percentage of
traffic classified by the service table, i.e., without performing

7 The pattern matching is calculated as the average cost for applying a

regular expression on a packet that matches the input string itself, using a
modified Boyer-Moore algorithm. Costs are significant higher (some order of
magnitude) for non-matching packets and using the DFA algorithm.
Measurements have been done using the pcre library. Lookup costs have
been derived by creating a lookup table through the stl::map C++ STL
template, which is implemented as a binary tree, and creating a table with 50K
entries.

payload inspection. Figure 13 shows that the average of such
percentage is between 85% and 90% of the total number of
packets for the Weekend trace, which is coherent with the
results shown in Figure 98. This number becomes closer to
100% (usually between 95% and 99%) when considering only
TCP packets with payload, which means that the vast majority
of traffic unclassified by the service-based method is related to
very short sessions directed to previously unknown services
(i.e., a typical pattern for peer-to-peer applications), in which
the 3-way TCP handshake accounts for the most part of the
traffic. Similar results were derived from the WorkingDay
trace, even if they are really different in term of time period
observed and number of hosts considered.

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60

Hours

All packets

Packets with payload

Figure 13. Percentage of packets classified with the service-based method
(Weekend trace).

VI. CONCLUSIONS

This paper presents a new idea for traffic classification,
named service-based classification, that is, in some respect,
orthogonal to the other classification techniques. This method
introduces also in the traffic classification arena the concept of
fast path, through which the vast majority of the traffic is
processed with a limited use of processing and memory
resources —ultimately in a short time— and a slow path that
is invoked in a limited number of cases. In this respect,
service-based classification aims at providing a solution to the
fast-path processing by proposing that traffic be classified
according to the service it belongs to. A service is identified
by a serviceID, which is the tuple {server IP address,
transport-level port, protocol}. Experimental data confirm
that services are very stable even over long periods, making
this method extremely simple, efficient and robust.
Particularly, robustness is achieved because this method does
not require the analysis of all sessions: provided that a service
has been previously recognized, sessions accessing it can be
classified even if encrypted at application-layer or data flow is

8 The total number of packets is the sum of packet classified by the service

table (about 85%), the unknown traffic (about 9%), and the ones that are
related to the TCP initial handshake plus the first packet(s) of the sessions that
are classified according to the payload-based method. Once the session is
classified by the payload-based module, following packets are included in the
amount of traffic classified by the service table.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

observed only in one direction. Results in terms of efficiency
are impressive, leading to a 37x reduction in processing cost,
and a 20x reduction in the number of entries in data structures
compared to session based classifiers at least in the traffic
trace examined; furthermore each entry being half the size.
Real-time measurements on the actual traffic transmitted on
the upstream link of our University show that roughly 81% of
the packets and 93% of the traffic (in terms of bytes) is
successfully classified with the proposed method.
Furthermore, service based classification is among the few
methods that guarantee early classification, including the
initial TCP handshake of a session. Among the few drawbacks
of this method is the impossibility to classify IPsec traffic. It is
worthy noticing that the precision of the service identification
process is crucial for obtaining high-quality results, since a
mismatch in service identification will impair the
classification of all the sessions related to that service.
Thanks to its fast-path approach, service-based classification
provides a way of making the deployment of sophisticated
methods for service identification, such as statistical or
behavioral algorithms, or even a combination of them with
payload-based classification, practical notwithstanding their
high complexity and processing requirements. In fact, by
using such solutions to discover network services and hence
populate the service table, i.e., only on the slow path, their
complex algorithms are executed only on a limited number of
packets. From a certain point of view, the efficiency of the
service-based approach frees computation and memory
resources that can be used to identify more precisely the
services. Finally, it is also possible to adopt a service database
built offline, possibly provided by a third party and modeled
after the signature database of antivirus programs.

REFERENCES
[1] Computer Networks Group (NetGroup) at Politecnico di Torino. The

NetBee Library. August 2004. [online] Available at
http://www.nbee.org/.

[2] S. Sen, O. Spatscheck, D. Wang. Accurate, scalable in-network
identification of p2p traffic using application signatures. Proceedings of
World Wide Web Conference, pp. 512-521 NY, USA, May 2004.

[3] P. Haffner, S. Sen, O. Spatscheck, D. Wang, D. 2005. ACAS: automated
construction of application signatures. In Proceedings of the 2005 ACM
SIGCOMM Workshop on Mining Network Data, pp. 197-202,
Philadelphia, USA, August 2005.

[4] F. Risso, A. Baldini, M. Baldi, P. Monclus, O. Morandi. Lightweight,
Session-Based Traffic Classification. Proceedings of the IEEE
International Conference on Communications (ICC 2008) - Advances in
Networks & Internet Symposium, Beijing, China, May 2008.

[5] F. Risso, A. Baldini, F. Bonomi. Extending the NetPDL Language to
Support Traffic Classification. In Proceedings of IEEE Globecom 2007,
Washington, D.C, USA, November 2007.

[6] R. Pang, V. Paxson, R. Sommer, L. Peterson. Binpac: a yacc for writing
application protocol parsers. In Proceedings of the 6th ACM SIGCOMM
on Internet Measurement, pages 289-300, Rio de Janeiro, Brazil,
October 2006.

[7] O. Reviv. Inside network programming with SML. EE Times, August
2003. Available at http://www.eetimes.com/story/OEG20030818S0077

[8] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multilevel
Traffic Classification in the Dark. In Proceedings of ACM SIGCOMM,
pages 229–240, Philadelphia, PA, August, 2005.

[9] A. Este, F. Gringoli, L. Salgarelli, Machine Learning techniques for
traffic classification: an approach based on Support Vector Machines.
Technical Report, November 2007.

[10] J. Erman, A. Mahanti, M. Arlitt. Traffic Classification using Clustering
Algoritms. Proceedings ACM SIGCOMM Workshop on Mining Network
Data (MineNet 06), Pisa, Italy, September 2006.

[11] J. Erman, A. Mahanti, M. Arlitt, C. Williamson. Identifying and
Discriminating Between Web and Peer-to-Peer traffic in the Network
Core. Proceedings of the 16th International World Wide Web Conference
(WWW), pp. 883-892, Banff, Canada, May 2007.

[12] N. Williams, S. Zander, G. Armitage, Evaluating Machine Learning
Algorithms for Automated Network Application Identification. CAIDA
Technical Report 060410B, April 2006.

[13] T.T.T. Nguyen, G. Armitage. A Survey of Techniques for Internet
Traffic Classification using Machine Learning. To appear in IEEE
Communications Surveys & Tutorials, (4th edition 2008).

[14] M. Crotti, M. Dusi, F. Gringoli, L. Salgarelli. Traffic Classification
through Simple Statistical Fingerprinting. ACM SIGCOMM Computer
Communication Review, Vol. 37, No. 1, pp. 5-16, Jan. 2007.

[15] M. Mellia, A. Carpani, R. Lo Cigno. TStat: TCP STatistic and Analisys
Tool. Proceedings of the 2nd International Workshop on Quality of
Service in Multiservice IP Networks (QoSIP2003) - LNCS2601, Milano,
Italy, February 2003.

[16] A. W. Moore, K. Papagiannaki. Toward the Accurate Identification of
Network Applications. International Workshop on Passive and Active
Network Measurement (PAM 2005), Boston MA , USA, vol. 3431, pp.
41-54, March 2005

[17] T. Karagiannis, A. Broido, M. Faloutsos, Kc claffy.Transport layer
identification of P2P traffic. Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement table of contents, pp. 121 - 134,
Taormina, Italy, Oct. 2004.

[18] G. Varghese, J.A. Fingerhut, F. Bonomi. Detecting Evasion Attacks at
High Speeds without Reassembly. Proceedings of ACM SIGCOMM
2006, Pisa, Italy, September 2006.

[19] H. Kim, J.-H. Kim, I. Kang, S. Bahk. Preventing Session Table
Explosion in Packet Inspection Computers. IEEE Transactions on
Computers, vol. 54, no. 2, pp. 238-240, February 2005.

[20] C. Estan, G. Varghese. New Directions in Traffic Measurement and
Accounting: Focusing on the Elephants, Ignoring the Mice. ACM
Transactions on Computer Systems, vol. 12, issue 3, pp. 270-313, Aug.
2003.

[21] Measurement and Analysis on the WIDE Internet Working group traffic
archive, http://tracer.csl.sony.co.jp/mawi/

[22] N. Brownlee. Traffic flow measurement: Meter MIB. Request for
Comments RFC 2064, Internet Engineering Task Force, January 1997.

 Cooperative Association for Internet Data Analysis, Network Traffic
Measurament Tool http://www.caida.org/tools/measurement/netramet/

First A. Author (M’76–SM’81–F’87) and the other authors may include
biographies at the end of regular papers. Biographies are often not included in
conference-related papers. This author became a Member (M) of IEEE in
1976, a Senior Member (SM) in 1981, and a Fellow (F) in 1987. The first
paragraph may contain a place and/or date of birth (list place, then date). Next,
the author’s educational background is listed. The degrees should be listed
with type of degree in what field, which institution, city, state, and country,
and year degree was earned. The author’s major field of study should be
lower-cased.

 The second paragraph uses the pronoun of the person (he or she) and not
the author’s last name. It lists military and work experience, including summer
and fellowship jobs. Job titles are capitalized. The current job must have a
location; previous positions may be listed without one. Information
concerning previous publications may be included. Try not to list more than
three books or published articles. The format for listing publishers of a book

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

within the biography is: title of book (city, state: publisher name, year) similar
to a reference. Current and previous research interests end the paragraph.

 The third paragraph begins with the author’s title and last name (e.g., Dr.
Smith, Prof. Jones, Mr. Kajor, Ms. Hunter). List any memberships in
professional societies other than the IEEE. Finally, list any awards and work
for IEEE committees and publications. If a photograph is provided, the
biography will be indented around it. The photograph is placed at the top left
of the biography. Personal hobbies will be deleted from the biography.

