Situational Awareness in Virtual Networks: the
ASTRID Approach

A. Carrega, M. Repetto
S3ITI Lab — CNIT, Italy
Email: matteo.repetto @cnit.it

A. Zafeiropoulos
Ubitech Ltd, Greece
Email: azafeiropoulos@ubitech.eu

Abstract—Cloud-based services often follow the same logical
structure of private networks. The lack of physical boundaries
and the dependence on third party’s infrastructural security
mechanisms often undermine the confidence in the overall
security level of virtualized applications. Integrating software
instances of common security middleboxes into cloud networks
helps overcome most suspicions, but leads to inefficient solutions.

In this paper, we describe the vision behind the ASTRID
project. The novelty of our concept lies in decoupling detection
algorithms from monitoring and inspection tasks, seeking better
integration with virtualization frameworks. We briefly elaborate
on the overall conceptual architecture and the foundation of its
implementation components. Additionally, we give insights on
the expected impacts and opportunities brought by this novel
paradigm over the existing approaches.

I. INTRODUCTION

Many ICT processes are designed with modular architec-
tures, assuming internal safe communication. Network virtu-
alization is a key enabler to move such applications to the
cloud, but it poses a number of additional security concerns,
when compared to current legacy deployments [1].

While ICT virtualization technologies have rapidly and con-
siderably evolved during the last decade, security has not ad-
vanced at the same pace. Basically, cloud users can easily cre-
ate virtual layer-2 and layer-3 network topologies that behave
like their physical counterpart, but the strength and reliability
of isolation is not comparable. Cloud management software
provides isolated sandboxes through hypervisors, namespaces,
and overlay networks, but in practice the virtualization infras-
tructure (hypervisors, shared networks, management software)
augments the attack surface and represents a privileged attack
vector, totally transparent to tenants’ software. Building on this
consideration, common firewalling functions have been made
available in a distributed form, so to effectively counter any
injection of malicious traffic both in the hypervisor or shared
networks.

Motivated by substantial limitations of security mechanisms
in the virtualization infrastructure, especially in multi-cloud
deployments, we introduce a novel security model for vir-
tual services deployed in cloud networks, which combines
efficiency of monitoring with effectiveness of detection. Our

F. Risso
Politecnico di Torino, Italy
Email: fulvio.risso@polito.it

T. Giannetsos
University of Surrey, UK
Email: a.giannetsos @surrey.ac.uk

S. Covaci
Technical University of Berlin, Germany
Email: stefan.covaci@tu-berlin.de

O. Toscano
Ericsson Telecomunicazioni, Italy
Email: orazio.toscano@ericsson.com

approach applies the same concept behind software-defined
networking to security, by pursuing a separation between
the data plane (inspection) and the control plane (detection),
mediated by an orchestration logic. In our architecture, the
programmable data plane is efficiently carved out in differ-
ent forms of virtualization environments (i.e., VM, LXC or
Docker container), while the control plane is left aside of the
service graph and include several complementary detection
algorithms; orchestration dynamically configures inspection
tasks according to the evolving needs of the detection logic.

In this paper, we describe the concept, architecture and
framework behind our approach, including requirements, tech-
nologies, and research directions that we are pragmatically
developing in the ASTRID project!. Since we are targeting a
very disruptive approach with respect to current practice, we
believe it is worth sharing early ideas and getting feedback,
even if concrete implementation and numerical results are not
yet available at this stage.

The rest of the paper is organized as follows. Section II gives
a concise overview of current trends for enforcing security in
cloud networks. We describe the novel concept of ASTRID
in Section III, together with a brief digression on software
orchestration. We outline the proposed framework in Section
IV, by outlining our main objectives and methodology. Finally,
we give insights on expected impacts of our work in Section V.

II. BEYOND THE SECURITY PERIMETER MODEL

Distributed firewalls integrate packet inspection and filtering
in hypervisors, overcoming the legacy model of security
perimeter, and moving towards micro-segmentation and capil-
lary monitoring and enforcing. A distributed firewall removes
the need for traffic steering (all network packets go through the
hypervisor, which is part of the firewall) and enables very fine-
grained control over security policies, beyond mere IP-based
rule structures (through the notion of logical “containers”
or “security groups”, e.g., vCloud Directory and OpenStack
Neutron). Despite their common usage in cloud networking,
distributed firewalls have some important limitations. First, this

IASTRID (AddreSsing ThReats for virtuallseD services)

approach is currently effective for enforcing filtering rules,
but does not have the flexibility to provide deep inspection
capability tailored to the specific needs for detecting threats
and on-going attacks. Second, they cannot provide the same
guarantees of private enterprise networks: external resources
lie in third parties infrastructures where trust mechanisms
are still missing (i.e., the behavior of physical hardware and
networks cannot be controlled by cloud users). Third, their
application in multi- and cross-cloud environments is not
straightforward, since their configuration is based on internal
communication mechanisms for each infrastructure. This issue
will be even more severe in cyber-physical systems [2], with
the integration of smart things in cloud applications, which are
expected to be a consistent use case for 5G.

Given the reduced set of security features integrated in
virtualization platforms and the increasing needs for cross-
cloud deployments, users are generally left most of the burden
for protecting their applications against external threats. Since,
on first approximation, virtualization environments could be
viewed as special instances of physical networks, software-
based versions of security middleboxes may be integrated in
service graph design [3], [4]. We argue that this approach
comes with important limitations in the current cyber-security
landscape:

o performance: the ever growing number and complexity
of protocols and applications complicate the detection of
threats and anomalies, evolving inspection from memory-
less simple string matching to stateful rules (such as
regular expressions), hence more processing power is
required, which is likely to overwhelm software-based
implementation of load balancers, firewalls, and intrusion
prevention systems, especially in case of large volumetric
attacks;

e context-awareness: the nature and composition of multi-
vector attacks requires pervasive monitoring and global
view, and the deployment of Security Information Event
and Management (SIEM) software for effective detection,
which may be too cumbersome and ineffective for small
applications and services;

e attack surface: virtual security appliances are more ex-
posed to attacks than their physical counterpart, since they
run in the same virtualization environment to protect;

e propagation of vulnerabilities: the growing trend to re-
use software, often distributed as pre-package images,
for multiple applications brings the risk of propagating
software, architectural, and configuration vulnerabilities
to many applications running in different infrastructures,
which can become very dangerous botnets.

III. A NOVEL SECURITY CONCEPT FOR CLOUD
NETWORKING

To address the limitations and flaws of current practice,
ASTRID pursues a novel approach, based on the disaggre-
gation of cyber-security appliances into business logic (i.e.,
detection algorithms) and data plane (i.e., monitoring and
inspection tasks), mediated by the orchestration logic through

proper security policies and configurations, as shown in Fig. 1.
Instead of overloading the execution environment with com-
plex and sophisticated threat detection capabilities, ASTRID
will only perform lightweight monitoring and inspection tasks
in service graphs and their execution environments, which feed
detection algorithms placed outside the graph design, as part
of a powerful and overarching awareness logic.

In what follows, Fig. 2 depicts the reference architecture
behind the main concept outlined above.

A. The Data Plane

The Data Plane is represented by multiple programmable
security hooks, which are present in the virtualization en-
vironment. The hooks include logging and event reporting
capability developed by programmers into their software, as
well as monitoring frameworks built in the kernel and system
libraries that inspect network traffic and system calls. Simpler
hooks may limit to data reporting, but many of them should
also include processing capabilities, to reduce the amount of
network traffic generated. Security hooks are ‘programmable’
because they can be configured at run-time, hence shaping the
system behavior according to the evolving context. This means
that packet filters, types and frequency of event reporting, and
verbosity of logging are selectively and locally adjusted to
retrieve the exact amount of knowledge, without overwhelming
the whole system with unnecessary information. The purpose
is to get more details for critical or vulnerable components
when anomalies are detected that may indicate an attack,
or when a warning is issued by cyber-security teams about
new threats and vulnerabilities just discovered. This approach
allows lightweight operation with low overhead when the risk
is low, even with parallel discovery and mitigation, while
switching to deeper inspection and larger event correlation
in case of anomalies and suspicious activities, hence, being
able to properly scale with the system complexity, even for
the largest services (e.g., carriers large scale virtual networks,
and worldwide mass applications as social nets).

B. Orchestration

Elasticity and agility brought by the different cloud models
have pushed the transition from legacy script-based automation
tools (e.g., Ansible, Puppet, Chef) to smarter orchestration
platforms, which aims at filling the gap between software
development, deployment and operation. Emerging devops
and orchestration tools are increasingly empowering software
developers to automate the development process by common
and standardized templates that make use of third-party soft-
ware. They leverage novel development paradigms, building
on modular architectures based on ‘“chains” or “graphs” of
software components and descriptive metadata (service mod-
els) , which are suitable for policy-based cloud deployment and
life-cycle management [5]. This effort has resulted in several
models and architectures for both cloud applications (e.g.,
TOSCA [6]) and network function virtualization (e.g., ETSI
MANO [7], and IEEE SFC [8]), which have been adopted

Orchestrator

\®

@ Firewall @ Intrusion Prevention System

@ Micro-Service n

| Local inspection

Fig. 1: The ASTRID concept entails a transition from the usage of virtual instances of security appliances in service graphs
(left side) to external detection logic fed by programmable security hooks mediated by the orchestration logic (right side).

Security framework

i "Security
| Policies

Algorithms

e

Orchestration

N LD ‘
Security Model
_____________ e R
Container
Micro-
Service [an)
Programmable
System hooks
libraries (G
| OS Kernel (- |

Fig. 2: Reference architecture for the ASTRID concept: decou-
pling centralized detection logic from local inspection tasks.

and extended in many orchestration tools and platforms (e.g.,
Juju?, Cloudiator®, and OpenBaton®, just to mention a few).

Orchestration is the smart process that deploys and manages
services according to specific requirements and life-cycle
policies. Specific tasks for orchestration usually include: pro-
visioning of virtual resources, selection of software instances
that match the graph model, (re-)configuration of the execution
environment and the hosted virtual functions, monitoring and
collection of measurements. In this case, orchestration must
be extended to understand security policies and to translate
them in configurations of the security hooks, including moni-
toring/inspection tasks.

The Security Model provides a common abstraction for the
underlying programmable hooks. It uses specific semantics to
describe security-related capabilities (e.g., logging, event re-

Zhttps://jujucharms.com.
3http://cloudiator.org.
“https://openbaton.github.io.

porting, filtering, deep packet inspection, system call intercep-
tion), and provides a common interface for their configuration.

Policies describe in an abstract form various life-cycle
management actions; for instance, types of events that should
be collected, anomalies that should be reported, actions that
should be undertaken upon detection of potential attacks, etc.
Policies may be encoded in high-level descriptive languages
(e.g., XML, JSON) for requesting specific orchestration ser-
vices (e.g., setting a packet filter for a given traffic flow,
replacing a buggy or misbehaving function, trigger packet
or software inspection). They are agnostic of the underlying
data planes, so that they can be used with different (even
heterogeneous) programming technologies.

C. Algorithms

Finally, Algorithms analyze and correlate information pro-
vided by the orchestration at graph level to detect threats,
anomalies, vulnerabilities, attacks. The goal is to cluster
typical functions (currently available) as separate appliances:
Intrusion Prevention/Detection Systems (IPS/IDS), Network
Access Control (NAC), Antivirus, Application Level Gateways
(ALG), and more. One of the main advantages is the availabil-
ity of data from different subsystems (disk, network, memory,
I/O), instead of relying on a single source of information
(network traffic) as is the common practice nowadays.

IV. THE ASTRID FRAMEWORK

To implement the novel concept outlined in Section III,
ASTRID has already devised an overarching framework com-
prising the following macro-blocks (see Fig. 3):

e service engineering, concerning the development and
modeling of software components and service graphs;

o service management, dealing with secure deployment and
life-cycle management of service graphs;

e situational awareness, responsible for detecting threats
and certifying data for security audits and court investi-
gations.

Service management

TSL Life-cycle 1
l management | 1
L '_ } f@ Cervification
N VY PKI : R uthority
| Service . —1.| ABAC/ABEC | situational awareness
Lprovider | . e Repository !
Service engineering : g 1
3 | 1 t— Police !
! Component Service graph | ! 1
: P grap ! PKI % !
9 0 T :
b : > : 3 1 -
| Software Context Model Service Policies ! ;
3 developer developer A . ! Certification .
:‘ Context Broker ‘ ;
| - . Security :
—| Threat intelligence !
User Interface | g 0D auditor :

Fig. 3: The ASTRID framework.

A. Service engineering

Software development will be based on existing orchestra-
tion platforms that enable graphical design, development, and
deployment of distributed applications over multiple clouds.
The design will be based on descriptive metamodels, com-
pliant with TOSCA and ETSI MANO, that already include
a rich context model, describing deployment constraints and
requirements. ASTRID will enrich the existing models, by
accounting for enhanced security-related capabilities:

o awareness, which describes the types of logs, events,
and behavioral/traffic monitoring that can be generated
or consumed by the service, and provides the necessary
hooks for configuring and controlling the generation of
such data at the virtual function level. Data sources can
be classified in static and dynamic ones. Static sources
consist of structured resources that are provided manually,
while dynamic sources consist of information that flows
from a systemic endpoint;

e trust and certification, which are used for generating and
conserving data (events, logs, measurements) with legal
validity for forensics investigation;

e privacy and encryption, to set up confidential channels
for communication;

e inspection, which provides technical means for legal
interception of network traffic (and possibly other events)
exchanged between the service components.

One of the most challenging tasks for ASTRID will be the
definition of performance-optimized data plane components,
which capture and distill events and knowledge with minimal
performance impact.

Programmability is the basic requirement to implement an
effective data plane for collecting security-related events and

information, well beyond the basic monitoring capability envi-
sioned by today’s flow collectors like NetFlow, sFlow, IPFIX,
and, more recently, OpenFlow and NetConf. The objective
is to include stateless and/or stateful inspection criteria on
flows and/or packets, kernel-level system calls, disk I/O, and
more, hence, offering a broader and more precise coverage
of what happens in the system under control. ASTRID will
leverage the IOVisor® technology, which offers a wider range
of options, including in-kernel eXpress Data Paths (XDP),
enhanced Berkeley Packet Filters (eBPF), and inspection of
system calls issued within the system.

Current I0Visor technology has been validated mostly with
monitoring applications, hence, with limited (or no) capa-
bilities to perform more effective actions (e.g., data mod-
ification/manipulation) on the incoming data. Furthermore,
only simple data plane programs are allowed, i.e., with-
out support for complex programs created according to the
split data/control plane paradigm as originally proposed with
SDN/OpenFlow. ASTRID will extend this technology, (i) to
support more powerful programs, which can operate according
to the split data/control plane paradigm; (ii) to support more
powerful actions on the data in transit, which enable to
implement some proactive security actions (e.g., drop network
traffic, modify packet information, craft ad-hoc packets for
specific purposes) that go beyond simple monitoring.

B. Service management

Service management entails various life-cycle operations on
service graphs, in addition to policies for automated tasks.
Specific tasks carried out by the orchestration process in-
clude: provisioning of virtual resources, selection of software

Shttps://www.iovisor.org.

instances that match the graph model, (re-)configuration of the
execution environment and the micro-services, monitoring and
collection of measurements. True and effective integration of
security in service orchestration requires a new approach that
addresses at least the following needs:

o checking the trustworthiness of software and service
graphs at deployment (design) time;

« adapting the service graph to the evolving security context
during run-time; e.g., replace compromised or vulnerable
components with equivalent (but better) ones, inject new
functions or disable existing ones;

o triggering software security analysis at run-time, either
periodically or after suspicious events;

« translating policies and high-level instructions into proper
code and configurations at the container/micro-service
level; e.g., setting/changing firewalling rules, deep packet
inspection, forwarding and routing policies;

« ensuring, though formal models and methods, the correct
implementation of security policies.

Formal verification of service graphs before deployment
is already included in orchestration platforms under consid-
eration for the project; the objective is to include security
verification as well, to ensure that orchestration actions do
not break any security constraints. For instance, deployment
and placement of service graphs must take into account
selection of software images from trusted developers, selection
of trusted/secure infrastructures, usage of encryption/integrity
algorithms for network traffic.

Semi-autonomous operation of the orchestration process is
usually driven by policies. These are sets of operating rules,
usually in the form ‘on event, if condition, then action’,
that describe life-cycle management operations, so to shape
the system behavior to the evolving context without altering
the system implementation. ASTRID will develop security
policies, including but not limited to:

e re-configuration of individual components and program-
ming of their virtualization environments, to change
the reporting behavior, including parameters that are
characteristics of each app (logs, events), network traf-
fic, system calls (e.g., disk read/write, memory alloca-
tion/deallocation), RPC toward remote applications (e.g.,
remote DB); programming also include the capability
to offload lightweight aggregation and processing tasks
to each virtual environment, hence reducing bandwidth
requirements and latency;

o composition of trusted business chains, by including
suitable mechanisms to interact with external services
and middleware, in order to guarantee privacy and cer-
tification of data origin; in this case, management is
mediated by protocols such as Attribute-Based Access
Control primitives and Attribute-Based Encryption Con-
trol primitives, while authentication relies on an Identity
Management component and a Public Key Infrastructure
(rooted at a trusted and public Certification Authority);

e re-action to threats and attacks (by filtering and/or

dropping packets, isolating compromised resources, etc.)
when triggered by detection algorithms;

The ASTRID framework also envisions authentication and
encrypted channels for interacting with the service compo-
nents. Thus, Secure deployment also entails the selection of
trusted services, hence, a TSL (Trusted Service List) compo-
nent is present.

C. Situational awareness

Situational awareness represents a totally new functional
block in frameworks for developing and deploying cloud ap-
plications. It includes all the components to collect and process
security-related data, and to provide knowledge and evidence
about cyber-security threats, vulnerabilities, and attacks.

The context broker collects contextual information, likely
by a Pub/Sub or similar paradigm, and feeds other engines
that process and store such information. Many sources of
information may be integrated into the platform, coming
from service graph components and from the data plane; in
principle, they have diverse format, frequency, and extraction
type (i.e. pull or push). The lack of semantic alignment should
be overcome by the creation of a common data representation
meta-model.

Threat intelligence is a collection of detection algorithms
that analyzes events, data, and logs, arguably by combin-
ing innovative detection methodologies (rules-based, machine
learning) with big data techniques; the purpose is to locate
vulnerabilities in the graph and its components, to identify
possible threats, and to timely detect on-going attacks.

We have to highlight that, since orchestration manages all
service graphs of the same service provider, threat intelligence
combines and correlates contextual information from different
graphs, which further improves threat detection and brings
the possibility to fix vulnerabilities in advance before other
components get compromised. Obviously, a larger base of
data and events would increase the processing burden, but this
should not be cumbersome, since the control plane is outside
the service graph and could run in dedicated infrastructures
with big data techniques.

ASTRID targets protection from both software vulnerabili-
ties and network threats, hence, it involves a mix of source and
run-time code analysis, formal verification, network analytics,
and packet filtering techniques. It will assemble a diverse
array of vulnerability analysis techniques to facilitate the
transition of the application development industry to new
security paradigms. This adaptive approach allows to fully
embrace all the advantages of micro-service deployment and
to keep up with an ever-evolving threat landscape.

ASTRID will develop two algorithms, as practical examples
of usage of the framework. One algorithm will build on fine
grained monitoring and inspection capabilities for volume
anomaly detection that processes raw flow information (e.g.,
[9]). The other algorithm will deal with static and dynamic
analysis of code to protect virtual services during their life-
cycle. Even though there are many static analyser tools [10]-
[12], there is a clear lack of code assessment mechanisms

that targets specifically cloud applications and virtual network
functions. For dynamic analysis, the challenge is to develop
hybrid vulnerability analysis tools that leverage packet fuzzing,
packet sniffing and selective concolic execution (some of the
most prominent vulnerability assessment techniques) in a com-
plementary manner [13]-[15], to find deeper (possible) bugs
during the execution of the services and their components.
By combining their strengths and mitigating their weaknesses,
we manage to avoid the path explosion inherent in concolic
analysis and the incompleteness of fuzzing.

ASTRID will also tackle the critical issue of the legal
validity of the extracted data to prosecute attackers, in case
the graphs may be occasionally compromised. Common chal-
lenges in this area include: i) storing trusted evidence, ii)
respecting user privacy when acquiring and managing evi-
dence, iii) preserving the chain of custody of the evidence. We
highlight that in the proposed framework the problem is not
the same as the definition of Cloud forensics [16], [17], since
investigation in our case is carried out by the service owner
and not by the cloud provider. In the ASTRID framework, the
certification process is responsible for origin, timestamping,
digital signing, integrity of relevant information that is used
for security audits and legal interception; the solution should
be able to capture enough information to trace security attacks
in a reliable manner and to interpret the data post-factum.
In addtion, the secure repository conserves data with legal
validity (security audit trails) for forensics investigation that
is initiated after the threat or attack has been identified.

Finally, the user interface provides proper visual represen-
tation of the current situation to the service provider enabling
decision making for remediation actions and countermeasures.

V. CONCLUSIONS

ASTRID pursues a novel approach for managing security
of service graphs, beyond the mere deployment of virtual
instances of legacy security appliances. Decoupling the data
plane from the detection logic is expected to bring important
impacts in security of virtual services and systems:

« reduced attack surface and increased efficiency for virtual
applications, by pulling security software out of service
graphs while relying on lightweight and effective data
plane technologies;

o increased agility and elasticity in service graph design
and deployment, since the graph topology is no more
overwhelmed by legacy security appliances;

« increased immunity of the detection logic to attacks and
better detection capability, since algorithms are clustered
together and share information;

o wider and uniform situational awareness, by correlating
events and information from multiple service graphs.

For the latter, we expect that higher efficiency and wider
awareness will prove to be critical factors for increasing the
security of national and EU critical infrastructure, which will
heavily rely on virtualization and cloud technologies after the
massive deployment of 5G networks.

ASTRID will demonstrate the developed technology and its
applications within two envisaged scenarios, involving secure
VoIP communication and remote collection of medical data.

ACKNOWLEDGMENT

This work was supported in part by the European Commis-
sion, under Grant Agreement no. 786922.

REFERENCES

[1] G. Pék, L. Buttyan, and B. Bencsath, “A survey of security issues in
hardware virtualization,” ACM Computing Surveys, vol. 45, no. 3, pp.
40:1-40:34, June 2013.

[2] R. Rapuzzi and M. Repetto, “Building situational awareness for network
threats in fog/edge computing: Emerging paradigms beyond the security
perimeter model,” Future Generation Computer Systems, vol. 85, pp.
235-249, August 2018.

[3] T. Quang Thanh, S. Covaci, T. Magedanz, P. Gouvas, and A. Zafeiropou-
los, “Embedding security and privacy into the development and opera-
tion of cloud applications and services,” in 17th International Telecom-
munications Network Strategy and Planning Symposium, Montreal, QC
— Canada, Sep. 26th—28th, 2016, pp. 31-36.

[4] D. Montero, M. Yannuzzi, A. L. Shaw, L. Jacquin, A. Pastor, R. Serral-
Gracia, A. Lioy, F. Risso, C. Basile, R. Sassu, M. Nemirovsky, F. Ciac-
cia, M. Georgiades, S. Charalambides, J. Kuusijirvi, and F. Bosco,
“Virtualized security at the network edge: a user-centric approach,” IEEE
Communications Magazine, vol. 53, no. 4, pp. 176-186, April 2015.

[5] J. Wettinger, U. Breitenbiicher, and F. Leymann, “Standards-based
DevOps automation and integration using TOSCA,” in IEEE/ACM
7th International Conference on Utility and Cloud Computing (UCC),
London, UK, Dec. 8-11, 2014, pp. 59-68.

[6] “Topology and orchestration specification for cloud applications,”
OASIS Standard, November 2013, version 1.0. [Online]. Available:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/0s/TOSCA-v1.0-os.pdf

[7]1 “Network functions virtualisation,” ETSI ISG NFV, October 2014.
[Online]. Available: http://portal.etsi.org/NFV/NFV_White_Paper3.pdf

[8] J. Halpern and C. Pignataro, “Service function chaining (SFC)
architecture,” RFC 7665, October 2015. [Online]. Available: https:
/Itools.ietf.org/rfc/rfc7665.txt

[9] H. Kasai, W. Kellerer, and M. Kleinsteuber, “Network volume anomaly
detection and identification in large-scale networks based on online time-
structured traffic tensor tracking,” IEEE Transactions on Network and
Service Management, vol. 13, no. 3, pp. 636-650, September 2016.

[10] G. Chatzieleftheriou, A. Chatzopoulos, and P. Katsaros, Leveraging
Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications. Springer, 2014, vol. 8803, pp. 486—488.

[11] L. Xin and C. Wandong, “A program vulnerabilities detection frame
by static code analysis and model checking,” in /EEE 3rd International
Conference on Communication Software and Networks (ICCSN), Xi’an,
China, May, 27th-29th, 2011, pp. 130-134.

[12] A. Armando, G. Bocci, G. Chiarelli, G. Costa, R. De Maglie, G. Mam-
moliti, and M. Alessio, Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2015, vol. 9035, ch. SAM: The Static
Analysis Module of the MAVERIC Mobile App Security Verification
Platform, pp. 225-230.

[13] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for overflows: A guided fuzzer to find buffer boundary violations,” in
USENIX Security Symposium, USA, 2013, pp. 49-64.

[14] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for
in-vivo multi-path analysis of software systems,” in Proceedings of
the sixteenth international conference on Architectural support for
programming languages and operating systems (ASPLOS XVI), Newport
Beach, California — USA, Mar., S5th—11th, 2011, pp. 265-278.

[15] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in IEEE Symposium on Security and Privacy,
San Francisco, California — USA, May, 20th-25th, 2012, pp. 380-394.

[16] K. Ruan, J. Carthy, T. Kechadi, and M. Crosbie, “Cloud forensics: An
overview,” in 7th IFIP Int. Conf. on Digital Forensics, USA, 2011.

[17] D. Barrett and G. Kipper, Virtualization and Forensics — A Digital
Forensic Investigators Guide to Virtual Environments. Elsevier, 2010.

