
Pattern Matching on Graphical Processing Units

1

Pattern Matching on Graphical Pattern Matching on Graphical

Processing UnitsProcessing Units

Fulvio Risso

Politecnico di Torino

Joint work with N. Cascarano , P. Rolando and R. Sisto

Pattern Matching on Graphical Processing Units

2

OutlineOutline

Å Finite State Automata

Å GPU Architecture

Å Our algorithm

Å Evaluation

Å Conclusions and lessons learned

N. Cascarano , P. Rolando, F. Risso , R. Sisto , iNFAnt : NFA Pattern
Matching on GPGPU Devices, ACM Computer Communication Review,
October 2010.

Pattern Matching on Graphical Processing Units

3

Finite State AutomataFinite State Automata

Å Pervasive computing model for describing machine behavior and

performing pattern matching.

Å Widely used in networking:

ï Spam detection

ï Content filtering

ï Intrusion detection systems

Å Contrasting requirements:

ï Throughput

ï Flexibility (e.g., to support more features than plain FSA)

ï Memory consumption (to store large rule sets)

Å Currently there is no ultimate solution (that we know of)

Pattern Matching on Graphical Processing Units

4

Looking for patterns: DFA Looking for patterns: DFA vsvs NFA (1)NFA (1)

Å Two simple patterns

ï .*a.*b (1)

ï .*c.*d (2)

Pattern Matching on Graphical Processing Units

5

Looking for patterns: DFA Looking for patterns: DFA vsvs NFA (2)NFA (2)

Deterministic processing
time on
Deterministic processing
time on sequential CPUs

(potentially) exponential
processing time on
sequential CPUs

(potentially) exponential
processing time on
sequential CPUs

Constant memory
bandwidth
on

Constant memory
bandwidth requirements
on sequential CPUs

Large memory bandwidth
requirements on parallel
architectures

Large memory bandwidth
requirements on parallel
architectures

(potentially) exponential
memory occupancy
(potentially) exponential
memory occupancy

Deterministic memory
occupancy
Deterministic memory
occupancy

NFANFANFANFA DFADFADFADFA

Pattern Matching on Graphical Processing Units

7

Other research groupsOther research groups

Å DFAs, DFAs and more DFAs

Å Multiple DFA [Yu et al, ANCS'06]

Å D2FA (Delayed input DFA) [Kumar et al, SIGCOMMô06]

Å An improved D2FA [Becchi et al, ANCS'07]

Å HFA [Becchi et al, ANCSô08]

Å ŭFA (Delta finite automata) [Ficara et al, SIGCOMM'08]

Å XFA(Extended finite automata) [Smith et al, SIGCOMM'08]

Pattern Matching on Graphical Processing Units

8

Our choice: NFA over GPUOur choice: NFA over GPU

Å If we want to compete against DFA, we need to explore multiple paths

in parallel

Å Hence, we need:

ï Parallelism

Å > 500 cores on recent GPUs

ï High memory bandwidth

Å > 100Gbps on recent GPUs

Pattern Matching on Graphical Processing Units

9

Are GPUs similar to CPUs?Are GPUs similar to CPUs?

Å No, definitely not

Å The hardware architecture is definitely different

ï Weôll have a look at them in the next slides

Å And, even more important, algorithms strongly depend on the

underlying hardware architecture

ï So, we have to design new algorithms in order to exploit GPUs at best

Pattern Matching on Graphical Processing Units

10

GPU internals: overviewGPU internals: overview

GPU

D
e

v
ic

e
 M

e
m

o
ry

Streaming
Multiprocessor

(e.g., 27)

Scalar
Processors

(e.g., 8)

Shared
Memory

(e.g., 16KB)

Device
Memory

(e.g., 1GB)

Pattern Matching on Graphical Processing Units

11

Execution model: Execution model: SIMTSIMT

Å Single Instruction Multiple Threads

Å All threads execute the same

instruction

ï Single instruction can control

multiple processing elements

ï Each thread has its own registers

Å Support for diverging execution

paths

ï Predicate execution in case of limited

divergence

ï Threads executed in sequence

otherwise

Å Done automatically

Å Much more flexible than SIMD

c

Memory

ins1

ins2

if

ins3

ins4

else

ins5

ins6

ins7

...

c c c
No write

back

Pattern Matching on Graphical Processing Units

12

GPU: Execution GPU: Execution vsvs Control logicControl logic

Å Limited amount of control logic

ï Simple instructions, limited amount of caches

Å Many elementary execution units

Pattern Matching on Graphical Processing Units

13

Hardware scheduling for threadsHardware scheduling for threads

c c

Device Memory

Pool of threads associated to core 1 Pool of threads associated to core 2

Pattern Matching on Graphical Processing Units

14

Coalesced accessesCoalesced accesses

Threads

c c c c c c c c

1 Coalesced accesses

c c c c c c c c

2 Coalesced accesses

c c c c c c c c

Sequential accesses

Memory

Pattern Matching on Graphical Processing Units

15

The algorithm: design guidelines (1)The algorithm: design guidelines (1)

Å Hardware threads are cheap

ï No problem if some thread turns out to be useless

ï Better to keep threads busy, so that we have at least a chance they may

produce something useful

Å Thread divergence is expensive

Å Instruction count matters

ï Processing cores are not so fast

Å ~1 GHz

Å Multiple clock cycles per instruction

Pattern Matching on Graphical Processing Units

16

The algorithm: design guidelines (2)The algorithm: design guidelines (2)

Å Memory bandwidth is abundant

ï No problem if some memory access turn out to be useless

Å Memory accesses must be organized with care

ï Different patterns

Å Random for Shared Memory

Å Coalesced for Device Memory

ï Different latency

Å Low for Shared memory

Å High for Device memory

Pattern Matching on Graphical Processing Units

17

Standard stateStandard state -- transition tabletransition table

Å Suitable for DFAs

Å NFA may have multiple elements

in the same cell

Å Sparse representation (not

efficient on GPU)

State(i+1) = TransMatrix [input(i), State(i)]

State1 State2 State3 State4 State5

a S2 S4 S2

b {S4,S3}

c S5 S5

1

3

2

4

5
a

a

a

bb
c

c

Pattern Matching on Graphical Processing Units

18

Standard stateStandard state -- transition table on GPUstransition table on GPUs

Å Several problems

ï Processing complexity

Å We have to follow transitions depending on

the list of active states

ï Difficult to organize many threads to do

the same job concurrently

ï Sparse accesses in the memory

State(i+1) = TransMatrix [input(i), State(i)]

State1 State2 State3 State4 State5

a S2 S4 S2

b {S4,S3}

c S5 S5

1

3

2

4

5
a

a

a

bb
c

c

Pattern Matching on Graphical Processing Units

19

1

3

2

4

5
a

a

a

bb
c

c

current states

next states

input byte: a

1 2 3 4 5

SymbolSymbol -- first representation (1)first representation (1)

c

Threads

c

1

c

Shared
memory

Device
memory

Symbols Transitions

a 1Ą2 3Ą4 5Ą2

b 2Ą3 2Ą4

c 2Ą5 4Ą5

1 3 5 2 2 2 4

2 4 2 3 4 5 5

a b cSymbols

Starting states

Next states

2 3

Pattern Matching on Graphical Processing Units

20

SymbolSymbol -- first representation (2)first representation (2)

Å Main data structure is an array, not a table

Å Compact in order not to waste memory

Å Status vectors kept in shared memory

Å Memory access patterns do not depend on input characters

ï Coalescing - friendly

Å Threads loop over the available transitions for each character

ï Average vs. maximum number of transitions

Symbols Transitions

a 1Ą2 3Ą4 5Ą2

b 2Ą3 2Ą4

c 2Ą5 4Ą5

1 3 5 2 2 2 4

2 4 2 3 4 5 5

a b cSymbols

Starting states

Next states

Pattern Matching on Graphical Processing Units

23

MultistridingMultistriding

Å Our algorithm is O(C) where C is the length of input data

Å Multistriding xN reduces the cost (on the GPU) N times

ï é if the other parameters are kept constant

a a b a c c c a b b c a a b c b

a a b a c c c a b b c a a b c b

a a b a c c c a b b c a a b c b

Standard
packet

Multistride
x2

Multistride
x4

256 possible
symbols

256 2 possible
symbols

2563 possible

symbols

Pattern Matching on Graphical Processing Units

27

EvaluationEvaluation

Å Memory

Å Throughput

ï Actual number of bytes processed (excluding TCP/IP headers)

ï Real packet data

ï Multiple packets transferred into the card by the host CPU (batch transfer)

Å Compared against HFA (Becchi and Crowley, 2008)

ï XFA (Estan , 2008) is in progress

Pattern Matching on Graphical Processing Units

28

HardwareHardware

Å Intel® Xeon ® 5160 @ 3.00GHz, 4GB RAM

ï One core used, hot caches

ï TDP 80W

Å nVidia GeForce GTX260

ï 27 multiprocessors, 8 scalar processors per core (216 in total)

ï 16KB shared memory (per block)

ï 1.242 GHz (shadow), 576MHz (core)

ï Bus to Device Memory: 448 bit, 2GHz, 112Gb/s bandwidth

ï Data transferred from the host memory to the GPU in batches of several

packets

ï Multistriding done in parallel on the host CPU

ï TDP 171W

Pattern Matching on Graphical Processing Units

29

RuleRule --sets used for evaluationsets used for evaluation

Å HTTP

ï Very simple and compact: we use this to analyze performances on small

sets

ï #rules: 2

Å SNORT

ï Same set used by M. Becchi et al. for HFA evaluation

ï Not very challenging in terms of signature expressiveness

ï #rules: 534

Å L7

ï The complete L7 - filter database

ï Extremely challenging in terms of signature expressiveness

ï #rules: 115

Pattern Matching on Graphical Processing Units

30

MemoryMemory

Http -sig Snort534 L7- filter

1

10

100

1000

10000

100000

1000000

10000000

Rule set

M
e

m
o

ry
 o

c
c
u

p
a

n
c
y

(B

y
te

s
)

HFA

NFA

NFA 2 -stride

NFA 4 -stride

Pattern Matching on Graphical Processing Units

31

ThroughputThroughput

Http -sig Snort534 L7- filter

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Rule set

T
h

ro
u

g
h
p

tp
u

t
(M

b
p

s
)

HFA

NFA

NFA 2 -strided

NFA 4 -strided

Pattern Matching on Graphical Processing Units

32

CommentsComments

Å Throughput

ï Better than state of the art, but not astonishing (there is still room for

improvement)

ï Achieved on a card that costs < 200US$

Å Memory

ï We can execute regex sets that are not supported by other approaches due

to space state explosion

ï Most valuable result

Pattern Matching on Graphical Processing Units

35

Lessons learned: memory latencyLessons learned: memory latency

Å Hiding memory latency is perhaps the most important points in packet

processing software

ï GPUs are excellent in hiding memory latency

ï Most network processors have similar characteristics

Å Buté not widely used (hence expensive, updated less frequently)

ï Intel x86 CPUs are very poor in this respect

Å They have caches, but those are not very appropriate for packet processing

software

Å CPU vs GPU

ï CPU: memory bandwidth is often good (> 50GBps), but CPU stalls when we

have a cache miss

ï GPU: they schedule another block of threads

Pattern Matching on Graphical Processing Units

36

Lessons learned (2)Lessons learned (2)

Å GPU are fine for our goal, but they could be improved

ï Need to reduce the time spent in executing instructions

Å New instructions (e.g. LOAD PACKET[R0+R1])

ï Faster CPU clocks

ï More efficient clock/instructions ratio

Å Currently 4 for most instructions

ï We can save a lot of gates if we get rid of floating point unit

Å Memory bandwidth not a limit (right now)

Å The size of fast on -chip memory may be a limit

Å Algorithms must be rewritten from scratch

Pattern Matching on Graphical Processing Units

37

Future workFuture work

Å Tuning (#threads per packet, #packets in parallel, etc)

Å More profiling (ongoing)

Å Some more tricks to save clock cycles

Å Measure power consumption of the GPU -based approach

Å Real conditions for network processing (e.g. session -based traffic

classification)

Å Other architectures?

ï E.g. what about Intel -based platforms?

Pattern Matching on Graphical Processing Units

38

Questions?Questions?

