Pattern Matching on Graphical Processing Units

4

\

Pattern Matching on Graphical

Prﬂsing Wnits
.

Fulvio Risso

Politecnico di To \

Joint work with N. rscarano . P. Rolando and R. Sisto

-

netgroup

Pattern Matching on Graphical Processing Units

Outline

Finite State Automata
GPU Architecture
Our algorithm
Evaluation

Conclusions and lessons learned

o Do Do o o

October 2010.

1
1
1
e O O B B B

' Matching on GPGPU Devices, ACM Computer Communication Review, i

Pattern Matching on Graphical Processing Units

Finite State Automata

A Pervasive computing model for describing machine behavior and
performing pattern matching.

A Widely used in networking:
i Spam detection
i Content filtering
T Intrusion detection systems
A Contrasting requirements:
I Throughput
i Flexibility (e.g., to support more features than plain FSA)

i Memory consumption (to store large rule sets)

A Currently there is no ultimate solution (that we know of)

Pattern Matching on Graphical Processing Units

Looking for patterns: DFA vs NFA (1)

A Two simple patterns
T *a*b (1)

T *cxd (2

netgroup

Pattern Matching on Graphical Processing Units

Looking for patterns: DFA vs NFA (2)

Deterministic processing
time on sequential CPUs

Constant memory
bandwidth requirements
on sequential CPUs

Pattern Matching on Graphical Processing Units

Other research groups

A

o Do Do Do Io I»

DFAs, DFAs and more DFAs

Multiple DFA [Yu et al, ANCS'06]

D2FA (Delayed input DFA) [Kumar
An improved D2FA [Becchi et al, ANCS'07]

HFA[Becchi et al, ANCSG608]

UFA (Delta finite automata) [Ficara et al, SIGCOMM'08]

XFA(Extended finite automata) [Smith et al, SIGCOMM'08]

et

a l

Pattern Matching on Graphical Processing Units

Our choice: NFA over GPU

A If we want to compete against DFA, we need to explore multiple paths
in parallel

A Hence, we need:

T Parallelism

A > 500 cores on recent GPUs

i High memory bandwidth

A > 100Gbps on recent GPUs

Pattern Matching on Graphical Processing Units

Are GPUSs similar to CPUs?

A No, definitely not

A The hardware architecture is definitely different

T Weodl | have a | ook at them i n the

A And, even more important, algorithms strongly depend on the
underlying hardware architecture

i So, we have to design new algorithms in order to exploit GPUs at best

next

sl 1

ern Matching on Graphical Processing Units

GPU internals: overview

GPU

Streaming
Multiprocessor
(e.qg., 27)

Scalar ;
Processors — |
(e.g., 8)

Shared
Memory
(e.g., 16KB)

Device
Memory
(e.g., 1GB)

netgroup

Execution model:

Pattern Matching on Graphical Processing Units

SIMT

Single Instruction Multiple Threads

All threads execute the same
instruction

i Single instruction can control
multiple processing elements

i Each thread has its own registers

Support for diverging execution
paths

T Predicate execution in case of limited
divergence

i Threads executed in sequence
otherwise

A Done automatically

Much more flexible than SIMD

ins1
Ins2
If
INs3
Ins4
else
Ins5
INS6
INs7

No write
back

Pattern Matching on Graphical Processing Units

GPU: Execution vs Control logic

A Limited amount of control logic

i Simple instructions, limited amount of caches

A Many elementary execution units

CPU GPU

netgroup

Pattern Matching on Graphical Processing Units

Hardware scheduling for threads

Pool of threads associated to core 1 Pool of threads associated to core 2

CCCCCCCCCCC(CCCCCCCCCCC(

<<<<<<<<<<<< <<<<<<<<<<<<

netg

roup

atching on Graphical Processing Units

Coalesced accesses

Threads
CCCCCCC(CCCCCCC(CCCCCCCC
Vv v Y v VAR R AR, % N
VAl \7 ~~~~~~~ ’ !
N 72 N
% "y
Memory
1 Coalesced accesses 2 Coalesced accesses Sequential accesses

Pattern Matching on Graphical Processing Units

The algorithm: design guidelines (1)

A Hardware threads are cheap
i No problem if some thread turns out to be useless

i Better to keep threads busy, so that we have at least a chance they may
produce something useful

A Thread divergence is expensive

A Instruction count matters

i Processing cores are not so fast

A ~1GHz

A Multiple clock cycles per instruction

Pattern Matching on Graphical Processing Units

The algorithm: design guidelines (2)

A Memory bandwidth is abundant

i No problem if some memory access turn out to be useless

A Memory accesses must be organized with care

i Different patterns
A Random for Shared Memory
A Coalesced for Device Memory
i Different latency

A Low for Shared memory

A High for Device memory

Pattern Matching on Graphical Processing Units

Standard state -transition table

A Suitable for DFAs

A NFA may have multiple elements
in the same cell

A Sparse representation (not
efficient on GPU)

State(i+1) = TransMatrix [input(i), State(i)]

| Satel | State2 | State3 | Stated | State5 _
a S2 S4 S2

b {S4,S3}
C S5 S5

netgroup

Pattern Matching on Graphical Processing Units

Standard state -transition table on GPUs

A Several problems

i Processing complexity

A We have to follow transitions depending on
the list of active states

i Difficult to organize many threads to do
the same job concurrently

I Sparse accesses in the memory

State(i+1) = TransMatrix [input(i), State(1i)]
- Statel State2 State3 State4 States
a S2 S4 S2

b {S4,S3}
C S5 S5

Pattern Matching on Graphical Processing Units

Symbol -first representation (1)

Threads

Symbols

I'd
w |
Startingstates 1| 1]3|5|2[2[2 |4

Device a 1A2 3A4 5A2 Se———m—eo ’
memory —> A YHIEEY e .
c 2A5 4A5 Next states E 214|2]3|4|5]5
12345
input byte: a current states [0 [0 Shared
nextstates [[1] memory
netgroup

Pattern Matching on Graphical Processing Units

Symbol -first representation (2)

Main data structure is an array, not a table
Compact in order not to waste memory

Status vectors kept in shared memory

o Do Do Io

Memory access patterns do not depend on input characters

I Coalescing -friendly

A Threads loop over the available transitions for each character

I Average vs. maximum number of transitions

Symbols a b C
Symbols A S
pmmmm————— \
a 1A 2 3A4 5A2 Startingstates 1/1|3[5[2]2]2 |4
b 2A 3 2A 4 SmTmTmm '
c 2A5 4A5 Nextstates 1[2a]2 8121515
| ¥
netgroup
H NN H NN

Pattern Matching on Graphical Processing Units

Multistriding

A Our algorithm is O(C) where C is the length of input data

A Multistriding xN reduces the cost (on the GPU) N times

i e if the other parameters are kept const al
Standard alalblalclclclalblolclalalblclp 256 possible
packet symbols

Multistride [aa|ba|cclca|bblca]ab |[ch | 226" possible
X2 symbols
. , _

Multistride 2aba ccca bbca abchb 256° possible
x4 symbols

netgroup

Pattern Matching on Graphical Processing Units

Evaluation

A Memory
A Throughput

i Actual number of bytes processed (excluding TCP/IP headers)

i Real packet data

i Multiple packets transferred into the card by the host CPU (batch transfer)

A Compared against HFA (Becchi and Crowley, 2008)

I XFA (Estan, 2008) is in progress

Pattern Matching on Graphical Processing Units

Hardware

A Intel® Xeon ® 5160 @ 3.00GHz, 4GB RAM
I One core used, hot caches

I TDP 80W

A nVidia GeForce GTX260
T 27 multiprocessors, 8 scalar processors per core (216 in total)
I 16KB shared memory (per block)
I 1.242 GHz (shadow), 576MHz (core)
i Bus to Device Memory: 448 bit, 2GHz, 112Gb/s bandwidth

i Data transferred from the host memory to the GPU in batches of several
packets

i Multistriding done in parallel on the host CPU

I TDP171W

Pattern Matching on Graphical Processing Units

Rule - sets used for evaluation

A HTTP

i Very simple and compact: we use this to analyze performances on small
sets

T #rules: 2

A SNORT
I Same setused by M. Becchi et al. for HFA evaluation
i Not very challenging in terms of signature expressiveness

T #rules: 534

i The complete L7 -filter database

I Extremely challenging in terms of signature expressiveness

T #rules: 115

Memory

10000000
1000000
100000
10000
1000

100

Memory occupancy (Bytes)

10

Pattern Matching on Graphical Processing Units

OHFA

ONFA

O NFA 2 -stride
B NFA 4 -stride

Http -sig Snort534 L7-filter

Rule set

netgroup

Pattern Matching on Graphical Processing Units

Throughput

Throughptput (Mbps)

2000

1800

1600

1400

1200

1000

800

600

400

200

0

Http - sig

OHFA
ONFA

O NFA 2 -strided

B NFA 4 -strided

Rule set

Snort534

netgroup

L7-filter

Pattern Matching on Graphical Processing Units

Comments

A Throughput

i Better than state of the art, but not astonishing (there is still room for
improvement)

i Achieved on a card that costs < 200US$
A Memory

I We can execute regex sets that are not supported by other approaches due
to space state explosion

T Most valuable result

Pattern Matching on Graphical Processing Units

Lessons learned: memory latency

A Hiding memory latency is perhaps the most important points in packet
processing software

I GPUs are excellent in hiding memory latency

T Most network processors have similar characteristics

AButé not widely used (hence expensive,

I Intel x86 CPUs are very poor in this respect

A They have caches, but those are not very appropriate for packet processing
software

A CPUvs GPU

i CPU: memory bandwidth is often good (> 50GBps), but CPU stalls when we
have a cache miss

i GPU: they schedule another block of threads

updat e

Pattern Matching on Graphical Processing Units

Lessons learned (2)

A GPU are fine for our goal, but they could be improved

i Need to reduce the time spent in executing instructions

A New instructions (e.g. LOAD PACKET[RO+R1])
i Faster CPU clocks

T More efficient clock/instructions ratio

A Currently 4 for most instructions

I We can save a lot of gates if we get rid of floating point unit
A Memory bandwidth not a limit (right now)

A The size of fast on -chip memory may be a limit

A Algorithms must be rewritten from scratch

Pattern Matching on Graphical Processing Units

Future work

A Tuning (#threads per packet, #packets in parallel, etc)

A More profiling (ongoing)

A Some more tricks to save clock cycles

A Measure power consumption of the GPU -based approach

A Real conditions for network processing (e.g. session -based traffic

classification)

A Other architectures?

I E.g. what about Intel -based platforms?

raphical Processing Units

Questions?

