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OutlineOutline

Å Finite State Automata

Å GPU Architecture

Å Our algorithm

Å Evaluation

Å Conclusions and lessons learned

N. Cascarano , P. Rolando, F. Risso , R. Sisto , iNFAnt : NFA Pattern 
Matching on GPGPU Devices, ACM Computer Communication Review, 
October 2010.
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Finite State AutomataFinite State Automata

Å Pervasive computing model for describing machine behavior and 

performing pattern matching.

Å Widely used in networking:

ï Spam detection

ï Content filtering

ï Intrusion detection systems

Å Contrasting requirements:

ï Throughput

ï Flexibility (e.g., to support more features than plain FSA)

ï Memory consumption (to store large rule sets)

Å Currently there is no ultimate solution (that we know of)
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Looking for patterns: DFA Looking for patterns: DFA vsvs NFA (1)NFA (1)

Å Two simple patterns

ï .*a.*b   (1)

ï .*c.*d    (2)
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Looking for patterns: DFA Looking for patterns: DFA vsvs NFA (2)NFA (2)
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Other research groupsOther research groups

Å DFAs, DFAs and more DFAs

Å Multiple DFA [Yu et al, ANCS'06]

Å D2FA (Delayed input DFA) [Kumar et al, SIGCOMMô06]

Å An improved D2FA [ Becchi et al, ANCS'07]

Å HFA [ Becchi et al, ANCSô08]

Å ŭFA (Delta finite automata) [ Ficara et al, SIGCOMM'08]

Å XFA(Extended finite automata) [Smith et al, SIGCOMM'08]
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Our choice: NFA over GPUOur choice: NFA over GPU

Å If we want to compete against DFA, we need to explore multiple paths 

in parallel

Å Hence, we need:

ï Parallelism

Å > 500 cores on recent GPUs

ï High memory bandwidth

Å > 100Gbps on recent GPUs
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Are GPUs similar to CPUs?Are GPUs similar to CPUs?

Å No, definitely not

Å The hardware architecture is definitely different

ï Weôll have a look at them in the next slides

Å And, even more important, algorithms strongly depend on the 

underlying hardware architecture

ï So, we have to design new algorithms in order to exploit GPUs at best
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GPU internals: overviewGPU internals: overview
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Execution model: Execution model: SIMTSIMT

Å Single Instruction Multiple Threads 

Å All threads execute the same 

instruction

ï Single instruction can control 

multiple processing elements

ï Each thread has its own registers

Å Support for diverging execution 

paths

ï Predicate execution in case of limited 

divergence

ï Threads executed in sequence 

otherwise

Å Done automatically

Å Much more flexible than SIMD
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GPU: Execution GPU: Execution vsvs Control logicControl logic

Å Limited amount of control logic

ï Simple instructions, limited amount of caches

Å Many elementary execution units
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Hardware scheduling for threadsHardware scheduling for threads

c c c c c c c c c c c c c c c c c c c c c c c c

Device Memory

Pool of threads associated to core 1 Pool of threads associated to core 2
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Coalesced accessesCoalesced accesses

Threads
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The algorithm: design guidelines (1)The algorithm: design guidelines (1)

Å Hardware threads are cheap

ï No problem if some thread turns out to be useless

ï Better to keep threads busy, so that we have at least a chance they may 

produce something useful

Å Thread divergence is expensive

Å Instruction count matters

ï Processing cores are not so fast

Å ~1 GHz

Å Multiple clock cycles per instruction
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The algorithm: design guidelines (2)The algorithm: design guidelines (2)

Å Memory bandwidth is abundant

ï No problem if some memory access turn out to be useless

Å Memory accesses must be organized with care

ï Different patterns

Å Random for Shared Memory

Å Coalesced for Device Memory

ï Different latency

Å Low for Shared memory

Å High for Device memory
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Standard stateStandard state -- transition tabletransition table

Å Suitable for DFAs

Å NFA may have multiple elements

in the same cell

Å Sparse representation (not

efficient on GPU)

State(i+1) = TransMatrix [input( i), State( i)]

State1 State2 State3 State4 State5

a S2 S4 S2

b {S4,S3}

c S5 S5

1
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a

a

bb
c

c
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Standard stateStandard state -- transition table on GPUstransition table on GPUs

Å Several problems

ï Processing complexity

Å We have to follow transitions depending on 

the list of active states

ï Difficult to organize many threads to do 

the same job concurrently

ï Sparse accesses in the memory

State(i+1) = TransMatrix [input( i), State( i)]

State1 State2 State3 State4 State5

a S2 S4 S2

b {S4,S3}

c S5 S5
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c
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SymbolSymbol -- first representation (2)first representation (2)

Å Main data structure is an array, not a table

Å Compact in order not to waste memory

Å Status vectors kept in shared memory

Å Memory access patterns do not depend on input characters

ï Coalescing - friendly

Å Threads loop over the available transitions for each character

ï Average vs. maximum number of transitions

Symbols Transitions

a 1Ą2 3Ą4 5Ą2

b 2Ą3 2Ą4

c 2Ą5 4Ą5

1 3 5 2 2 2 4
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a b cSymbols

Starting states

Next states
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MultistridingMultistriding

Å Our algorithm is O(C) where C is the length of input data

Å Multistriding xN reduces the cost (on the GPU) N times

ï é if the other parameters are kept constant

a a b a c c c a b b c a a b c b

a a b a c c c a b b c a a b c b

a a b a c c c a b b c a a b c b
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256 2 possible 
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2563 possible 
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EvaluationEvaluation

Å Memory

Å Throughput

ï Actual number of bytes processed (excluding TCP/IP headers)

ï Real packet data

ï Multiple packets transferred into the card by the host CPU (batch transfer)

Å Compared against HFA ( Becchi and Crowley, 2008)

ï XFA ( Estan , 2008) is in progress
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HardwareHardware

Å Intel® Xeon ® 5160 @ 3.00GHz, 4GB RAM

ï One core used, hot caches

ï TDP 80W

Å nVidia GeForce GTX260

ï 27 multiprocessors, 8 scalar processors per core (216 in total)

ï 16KB shared memory (per block)

ï 1.242 GHz (shadow), 576MHz (core)

ï Bus to Device Memory: 448 bit, 2GHz, 112Gb/s bandwidth

ï Data transferred from the host memory to the GPU in batches of several 

packets

ï Multistriding done in parallel on the host CPU

ï TDP 171W
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RuleRule --sets used for evaluationsets used for evaluation

Å HTTP

ï Very simple and compact: we use this to analyze performances on small 

sets

ï #rules: 2

Å SNORT

ï Same set used by M. Becchi et al. for HFA evaluation

ï Not very challenging in terms of signature expressiveness

ï #rules: 534

Å L7

ï The complete L7 - filter database

ï Extremely challenging in terms of signature expressiveness

ï #rules: 115
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MemoryMemory
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ThroughputThroughput
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CommentsComments

Å Throughput

ï Better than state of the art, but not astonishing (there is still room for 

improvement)

ï Achieved on a card that costs < 200US$

Å Memory

ï We can execute regex sets that are not supported by other approaches due 

to space state explosion

ï Most valuable result
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Lessons learned: memory latencyLessons learned: memory latency

Å Hiding memory latency is perhaps the most important points in packet 

processing software

ï GPUs are excellent in hiding memory latency

ï Most network processors have similar characteristics

Å Buté not widely used (hence expensive, updated less frequently)

ï Intel x86 CPUs are very poor in this respect

Å They have caches, but those are not very appropriate for packet processing 

software

Å CPU vs GPU

ï CPU: memory bandwidth is often good (> 50GBps), but CPU stalls when we 

have a cache miss

ï GPU: they schedule another block of threads



Pattern Matching on Graphical Processing Units

36

Lessons learned (2)Lessons learned (2)

Å GPU are fine for our goal, but they could be improved

ï Need to reduce the time spent in executing instructions

Å New instructions (e.g. LOAD PACKET[R0+R1])

ï Faster CPU clocks

ï More efficient clock/instructions ratio

Å Currently 4 for most instructions

ï We can save a lot of gates if we get rid of floating point unit

Å Memory bandwidth not a limit (right now)

Å The size of fast on -chip memory may be a limit

Å Algorithms must be rewritten from scratch
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Future workFuture work

Å Tuning (#threads per packet, #packets in parallel, etc)

Å More profiling (ongoing)

Å Some more tricks to save clock cycles

Å Measure power consumption of the GPU -based approach

Å Real conditions for network processing (e.g. session -based traffic 

classification)

Å Other architectures?

ï E.g. what about Intel -based platforms?
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Questions?Questions?


